Регулятор громкости: схема и применение. Регуляторы громкости в ламповых усилителях Сопротивление регулятора громкости

Для изменения настройки звука существуют специальные регуляторы. По частотности их делят на активные, а также пассивные. Дополнительно разделение осуществляется по типу настройки. Самыми распространенными принято считать цифровые регуляторы. Создаются они под разные виды усилителей и имеют свою канальность. Чтобы понять принцип работы данных приборов, следует подробно разобраться в их устройстве.

Как устроен регулятор?

Важным элементом регулятора принято считать микросхемы. По своим параметрам они довольно сильно могут отличаться. Если рассматривать профессиональные модели, то там имеется до 100 различных контактов. Дополнительно в регуляторе наличествует контроллер, который занимается изменением предельной частоты прибора. С помехами в устройстве справляются конденсаторы. В простой модели их имеется до четырех. Обычно можно встретить в регуляторе Их частотность, как правило, указывается в маркировке.

В профессиональных моделях конденсаторы устанавливаются электролитические. Проводимость у них гораздо лучше, но стоят они дорого. Резисторов в стандартной схеме можно встретить до десяти единиц. Отличаются они между собой по предельному сопротивлению. Самые простые модели способны похвастаться параметром в 2 Ома. Резисторы с такими показателями встречаются довольно часто. Наконец, последним элементом регулятора следует назвать замыкающий механизм. Чаще всего он представлен в виде кнопки, однако есть модели со сложной системой индикации.

Применение электронной модели

Электронный регулятор громкости устанавливается практически на всех звуковых девайсах. Изменять колебания при этом можно различными способами. Чаще всего можно встретить плавные контроллеры, которые позволяют очень тонко настаивать звук, однако есть и скачковые системы. В таком случае изменение параметров осуществляется пошагово и резко. В студиях звукозаписей имеются многоканальные устройства для микшеров. Они позволяют регулировать множество эффектов. Если рассматривать комбинированный электронный регулятор громкости, то многое в данном случае зависит от акустической системы.

Самостоятельная сборка регулятора

Для того чтобы собрать регулятор громкости своими руками для усилителя средней мощности, понадобится микросхема как минимум на 8 бит. Транзисторы для нее лучше всего использовать биполярные. Обычно они в магазине представлены с маркировкой "2НН". Показатель сопротивления у них в среднем колеблется в районе 3 Ом. Контроллеры в основном побираются линейные. Они позволяют довольно плавно изменять предельную частоту. При этом амплитуда помех будет зависеть исключительно от конденсаторов.

Для обычного регулятора будет достаточно установить их три штуки. Светодиоды могут использоваться только на пару с выпрямителями. В некоторых случаях, для того чтобы сделать регулятор громкости своими руками, дополнительно в начале цепи советуют использовать стабилитрон. Данный элемент значительно повышает работоспособность резисторов и регулятора в целом.

Как устроены регуляторы для наушников?

Регулятор громкости для наушников имеет только два конденсатора. Отличительной особенностью таких устройств можно назвать слабую пропускную способность. Сигнал во многих моделях идет долго. Связано это с тем, что транзисторы не рассчитаны на большую мощность. В некоторых моделях регуляторов устанавливаются резонаторы. Существуют они разных типов и имеют свои параметры. Наиболее часто можно встретить Параметр сопротивления у них доходит до 4 Ом. В свою очередь ферритовые аналоги могут выдерживать только 2 Ом. Соединяется регулятор громкости для наушников с динамиком при помощи дросселя.

Схема регулятора тембра

Регуляторы тембра и громкости контроллер имеют операционный. Подходит он для усилителей разной мощности. Диоды в данном случае устанавливаются довольно редко. Выпрямители есть только в моделях, где транзисторов менее трех штук. Резисторы в приборах включаются с маркировкой "ВС". у них довольно хорошая, но они чувствительны к высоким температурам. Конденсаторы во многих моделях стоят биполярные. Предельное сопротивление регуляторы тембра и громкости способны выдерживать на уровне 3 Ом. В стандартной модели гнездо имеется "РРА" для обычного кольца. Дроссель с резистором соединяются только через преобразователь.

Как настроить регулятор в "Виндовс"?

Осуществить настройку регулятора довольно просто. Находится значок данного элемента на панели "Пуск". Нажав на него один раз левой клавишей, можно изменять предельную частоту. В некоторых случаях пользователь не видит указанный значок. Происходит это из-за того, что регулятор громкости Windows не добавлен в область уведомлений. Обычно он переносится в автоматическом режиме операционной системой. Однако данное действие можно выполнить и вручную через панель управления. Также причина может заключаться в отсутствии файла Sndvol.exe. В таком случае его копию нужно сохранить на компьютере.

Параметры стереорегуляторов

Коэффициент шума у них находится в районе 70 дБ. Параметр нелинейного искажения обычно составляет 0.001 %. Диапазон рабочих частот колеблется от 0 до 10000 Гц. Входное напряжение устройства составляет 0.5 В. Во многих моделях контроллеры устанавливаются реверсивные. Выходное напряжение при этом должно равняться не более 0.5 В. Стабилизатор стерео регулятор громкости обычно имеет импульсный. Питание прибора осуществляется через блок с напряжением до 15 В.

Модели микрофонов с регуляторами

Микрофон с регулятором громкости является на сегодняшний день распространенным девайсом, а микросхема в нем обычно имеется серии "МК22". Пропускная способность у моделей довольно высокая, сигнал проходит хорошо. В стандартной схеме диодов имеется два. Один из них, как правило, располагается возле запирающего механизма. Конденсаторы устанавливаются с различными параметрами. Это необходимо для того, чтобы контролировать частоты различной величины.

Сопротивление у них в среднем выдерживается до 4 Ом. Конденсаторы в регуляторе должны быть только электролитические. В данном случае это даст большой прирост к чувствительности прибора. Резисторов в стандартной схеме имеется до восьми единиц. Ими сопротивление в среднем выдерживается на уровне 3 Ом. Непосредственно запирающий механизм регулятор громкости имеет в виде контроллера.

Схема кнопочного регулятора

Кнопочный регулятор громкости (схема показана ниже) отличается от других устройств тем, что диоды у него располагаются попарно. В результате микросхема довольно быстро передает сигнал на резистор. Выпрямители во многих моделях отсутствуют, и это следует учитывать. Конденсаторов в стандартной схеме предусмотрено до трех единиц. Сопротивление у них максимум выдерживается на уровне 2 Ом. Коэффициент шума у таких моделей в среднем колеблется в районе 50 дБ.

Показатель нелинейного искажения, в свою очередь, равен 0.002 %. Из недостатков следует отметить определенные проблемы с неравномерностью. Связано это с малым диапазоном рабочих частот. В некоторых случаях имеет смысл устанавливать усилитель с напряжением более 15 В. В таком случае параметры звука повысятся.

Пассивные регуляторы

Пассивный регулятор громкости отличается от прочих устройств тем, что он производится многоканальным. Сопротивление им в среднем выдерживается на уровне 3 Ом. Запирающие механизмы устанавливаются стандартные. В свою очередь контроллеры в них имеются исключительно цифровые. Благодаря этому синхронизировать стереозвук в приборе получается более точно. Таким образом, проблема с неравномерностью отпадает сама собой.

Резисторы во многих моделях имеются подстроечного типа. Отличительной особенностью профессиональных моделей считается наличие резонатора. Выходное напряжение данного элемента способно доходить до 8 В. Чаще всего в регуляторах они устанавливаются кварцевого типа. Конденсаторов в стандартной схеме имеется два. Микросхема в системе рассчитана на 8 бит.

Применение активных моделей

Активный регулятор громкости, как правило, применяется для приемников, мощность которых не превышает 5 В. Резисторы в нем имеются с сопротивлением около 4 Ом. Резонаторы устанавливаются кварцевые. Отличительной особенностью данных регуляторов можно назвать сигнальные реле. Дроссели, как правило, в приборах не используются. Усилители уславливаются только операционного типа. В связи с этим необходимость в выпрямителях отсутствует. Системы индикации в приборах можно встретить самые разнообразные. Для мобильных устройств такой регулятор громкости не подходит.

Схема комбинированного регулятора

Комбинированный регулятор громкости (схема показана ниже) конденсаторов имеет не более пяти штук. Транзисторы при этом могут использоваться только биполярного типа. Пропускная способность у них довольно высокая. Сопротивление в среднем выдерживается на уровне 3 Ом. Транзисторы линейные в системе предусмотрены. Стабилизаторы уславливаются только в профессиональных моделях. Предельная частота у них не превышает 4000 Гц.

Как устроен тонкомпенсированный регулятор?

Регуляторы данного типа в основном используются в магнитолах. Система их устройства довольно простая. Микросхема в приборе устанавливается серии "КР2". Непосредственно контроллер имеется линейного типа. Транзистор используется только один. Располагается он рядом с микросхемой.

Конденсаторов всего имеется два. Чаще всего можно встретить именно электролитический тип. они способны выдерживать на уровне 16 В. Однако выходной сигнал устройством воспринимается довольно плохо. Резисторов в регуляторе имеется не более пяти. Все они устанавливаются с предельной частотой около 3000 Гц.

Профессиональные модели

Профессиональные регуляторы микросхемы имеют многоканальные. Учитывая это, для нормальной работы им требуется Находится он, как правило, рядом с конденсатором. Рассчитана система на нагрузку 8 бит. Замыкающий механизм в устройстве установлен обычный. Коэффициент шума прибора максимум достигает 55 дБ. Показатель нелинейного искажения в некоторых случаях способен превышать 0.001 %.

Рабочая частота в среднем колеблется в районе 2000 Гц. С равномерностью такие схемы проблемы испытывают редко. Выходное напряжение прибора равняется 0.5 В. Резисторная развязка сопротивление максимум выдерживает 3 Ом. Преобразователи в системе предусмотрены, а крепятся они к плате только через дроссель. Конденсаторов в стандартной модели имеется около трех единиц. Их вполне достаточно, чтобы справляться с различными сигналами. Возле гнезда устройства обязательно располагается

Электронные регуляторы тембра

Все электронные регуляторы отличаются компактными размерами, и предельное напряжение выдерживают большое. В данном случае они не способны работать без усилителя. Стабилизаторы, как правило, применяются только линейные. Цепи диодов располагаются сразу за платой.

Искажения устройством подавляются за счет резисторов. С предельной частотой регулятору помогают справиться стабилизаторы. Выпрямители устанавливаются крайне редко. Энергопотребление таких устройств высокое, а в преобразователях они не нуждаются. Увидеть указанные приборы на микшерах можно довольно часто.

Взглянем на переменный резистор… Что мы о нём знаем? Пока ничего, ведь мы ещё даже не знаем основных параметров этой весьма распространённой в электронике радиодетали. Так давайте же узнаем больше о параметрах переменных и подстроечных резисторов.

Для начала, стоит отметить то, что переменные и подстроечные резисторы являются пассивными компонентами электронных схем. Это значит, что они потребляют энергию электрической цепи в процессе своей работы. К пассивным элементам цепи также относят конденсаторы , катушки индуктивности и трансформаторы .

Параметров, за исключением прецизионных изделий, которые используются в военной или космической технике, у них не слишком много:

    Номинальное сопротивление . Без сомнения, это основной параметр. Полное сопротивление может быть в пределах от десятков ом до десятков мегаом. Почему полное сопротивление? Это сопротивление между крайними неподвижными выводами резистора - оно не изменяется.

    С помощью регулирующего ползунка мы можем менять сопротивление между любым из крайних выводов и выводом подвижного контакта. Сопротивление будет меняться от нуля и до полного сопротивления резистора (или наоборот - в зависимости от подключения). Номинальное сопротивление резистора указывается на его корпусе с помощью буквенно-числового кода (М15М, 15k и т.п.)

    Рассеиваемая или номинальная мощность (мощность резистора). В обычной электронной аппаратуре используются переменные резисторы мощностью: 0,04; 0,25; 0,5; 1,0; 2,0 ватта и более.

    Стоит понимать, что проволочные переменные резисторы, как правило, мощнее тонкоплёночных. Да это и не мудрено, ведь тонкая проводящая плёнка может выдержать куда меньший ток, чем провод. Поэтому о мощностных характеристиках можно ориентировочно судить даже по внешнему виду "переменника" и его конструкции.

    Максимальное или предельное рабочее напряжение . Тут всё и так понятно. Это максимальное рабочее напряжение резистора, превышать которое не стоит. Для переменных резисторов максимальное напряжение соответствует ряду: 5, 10, 25, 50, 100, 150, 200, 250, 350, 500, 750, 1000, 1500, 3000, 8000 Вольт. Предельные напряжения некоторых экземпляров:

    СП3-38 (а - д) на мощность 0,125 Вт - 150 В (для работы в цепях переменного и постоянного тока);

    СП3-29а - 1000 В (для работы в цепях переменного и постоянного тока);

    СП5-2 - от 100 до 300 В (в зависимости от модификации и номинального сопротивления).

Чаще всего в каскадах регуляторов громкости высококачественной звуковоспроизводящей аппаратуры непосредственно в качестве регуляторов используются переменные резисторы, позволяющие постепенно или плавно изменять усиление сигнала. Однако нередко в ламповых усилителях НЧ применяются и ступенчатые регуляторы громкости, выполненные на постоянных резисторах и переключателях.

Самым простым и распространенным схемотехническим решением регулятора громкости лампового УНЧ при выборе плавной регулировки является введение потенциометра с переменным коэффициентом деления напряжения во входную цепь, в межкаскадную цепь или в цепь отрицательной обратной связи усилителя. Перемещением движка этого потенциометра и осуществляется непосредственно регулировка громкости. При этом в качестве регулировочного потенциометра рекомендуется использовать переменные резисторы с так называемой логарифмической характеристикой (характеристика типа В), чтобы обеспечивалось равномерное изменение громкости воспроизводимого сигнала при различных уровнях входных сигналов.

Регулятор громкости с плавной регулировкой при желании можно заменить регулятором со ступенчатой регулировкой. Для этого достаточно произвести соответствующую замену регулирующего элемента, то есть вместо потенциометра установить цепочку последовательно соединенных постоянных резисторов, количество которых и соотношение их номиналов определяет диапазон и закон регулирования.

При выборе схемы регулятора громкости не следует забывать о том, что человеческое ухо имеет различную чувствительность к сигналам разной частоты и громкости. На практике это явление проявляется в том, что при уменьшении громкости воспроизводимого звукового сигнала у слушателя создается впечатление изменения тембра звучания, которое выражается в кажущемся значительно большем уменьшении относительной громкости составляющих низших и высших частот по сравнению с сигналами средних частот. Поэтому в высококачественной звуковоспроизводящей аппаратуре применяются тонкомпенсированные регуляторы громкости, в которых при уменьшении громкости осуществляется необходимый подъем составляющих низших и высших частот для обеспечения равной громкости восприятия. С увеличением громкости требуемый подъем составляющих граничных частот уменьшается. Основу тонкомпенсированных регуляторов громкости обычно составляют потенциометры с одним или двумя отводами, к которым подключаются соответствующие RC-цепочки.

Обычно регулятор громкости используется для изменения уровня выходного сигнала УНЧ с минимальными вносимыми искажениями. При этом чаще всего в качестве такого регулятора применяется переменный резистор, включаемый либо на входе усилителя, либо между предварительным и оконечным каскадами. Вместо переменного резистора, как уже отмечалось, может использоваться и ступенчатый регулятор, выполненный на основе переключателя и кассеты резисторов с разным сопротивлением. Упрощенные принципиальные схемы простейших регуляторов громкости приведены на рис. 1.

Рис.1. Упрощенные принципиальные схемы регуляторов громкости

Чтобы предотвратить возможность перегрузки первой лампы усилителя при большой амплитуде входного сигнала, используется схема подключения регулятора громкости, изображенная на рис. 1, а. В этом случае переменный резистор применяется непосредственно в качестве нагрузки предыдущего устройства. Если же максимальная амплитуда входного сигнала мала, переменный резистор регулятора громкости можно установить в цепи управляющей сетки одного из последующих усилительных каскадов, как показано на рис. 1, б. Преимуществом такого подключения является ослабление воздействия внешних помех, так как на регулятор подается полезный сигнал, уже усиленный до необходимого уровня.

Регулировка уровня громкости в ламповых УНЧ может осуществляться и с помощью специальных каскадов, в которых обеспечивается изменение крутизны характеристики лампы. Принцип действия таких регуляторов громкости основан на том, что при использовании в усилительном каскаде лампы с большим внутренним сопротивлением усиление такого каскада будет пропорционально крутизне ее характеристики (S). Поэтому при использовании лампы с переменной крутизной характеристики для изменения усиления каскада достаточно переместить рабочую точку на участок с другой величиной крутизны. Изменение положения рабочей точки и, соответственно, коэффициента усиления может осуществляться разными способами, например изменением величины напряжения смещения или напряжения на экранной сетке лампы. Упрощенные принципиальные схемы таких регуляторов громкости приведены на рис. 2.

Рис.2. Упрощенные принципиальные схемы регуляторов громкости с изменением крутизны характеристики лампы

Необходимо отметить, что рассмотренные регуляторы громкости, в которых используется принцип изменения крутизны характеристики лампы, могут применяться лишь в первых каскадах УНЧ при относительно малых амплитудах входного сигнала (не более 200 мВ). При более высоких уровнях входного сигнала могут возникнуть значительные нелинейные искажения, вызванные криволинейностью динамической характеристики.

Для регулировки громкости в ламповых усилителях низкой частоты нередко используются регуляторы, которые обеспечивают компенсацию низких частот при малых уровнях входного сигнала. Принципиальная схема одного из таких регуляторов приведена на рис. 3.

Рис.3. Принципиальная схема регулятора громкости с компенсацией низких частот при малых уровнях входного сигнала

На вход каскада подается входной сигнал с фиксированным подъемом уровня низших частот воспроизводимого диапазона. Этот уровень определяется величинами сопротивлений резисторов R1, R2 и R3, образующими входной делитель, а также значением емкости конденсатора С2. С выхода регулятора в цепь сетки лампы через делитель, образованный элементами R7 и С2, поступает сигнал обратной связи. Чем выше уровень громкости, тем значительнее и обратная связь. Величина сопротивления резистора R7 определяет соотношение ослабления низших частот в цепи обратной связи к подъему этих частот во входной цепи. В идеальном случае подбором сопротивления резистора R7 следует добиться того, чтобы ослабление низших частот в цепи обратной связи было равно их подъему во входной цепи. В этом случае форма частотной характеристики сигнала на выходе каскада будет близка к линейной. Приведенные на рис. 3 номиналы элементов рассчитаны на использование одного из триодов лампы 6Н2П.

При уменьшении громкости сигнала с помощью потенциометра R6 уменьшается и значение обратной связи, однако фиксированный подъем низших частот остается прежним. В результате уровень низших частот в выходном сигнале возрастает. При очень малых значениях громкости обратная связь практически отсутствует, а характеристика каскада определяется только параметрами цепочки R1, R3 и С2. При этом подъем низших частот максимальный.

Одним из недостатков данной схемы является то, что триод включен перед регулятором громкости, поэтому при очень сильном входном сигнале он может перегружаться. Однако сигнал с входа подается на управляющую сетку лампы через делитель, который даже на частоте 50 Гц обеспечивает ослабление более чем в 4 раза. Вследствие этого данная схема может работать без искажений при уровне входного сигнала до 4-5 В. Также необходимо отметить, что рассматриваемая схема чувствительна к уровню фильтрации анодного напряжения, поэтому применение фильтра R8C5 в цепи питания анода лампы является обязательным.

При конструировании лампового УНЧ радиолюбители нередко ставят перед собой задачу включения в его состав каскада, с помощью которого можно регулировать громкость дистанционно. Применение в обычных регуляторах выносных пультов с размещенными в них потенциометрами вряд ли можно считать удачным решением, поскольку чаще всего такие пульты соединяются с усилителем с помощью длинных кабелей, что приводит к появлению весьма существенных искажений. Однако существуют разнообразные схемотехнические решения, обеспечивающие регулирование громкости на расстоянии, например, посредством изменения управляющего напряжения постоянного тока, при практическом отсутствии искажений. Принципиальная схема одного из вариантов регулятора громкости с дистанционным управлением приведена на рис. 4.

Рис.4. Принципиальная схема регулятора громкости с дистанционным управлением

Отличительной особенностью рассматриваемого регулятора является включение вместо катодного резистора триода усилительного каскада еще одного триода, который выступает в роли регулирующего элемента. При изменении величины постоянного отрицательного напряжения, подаваемого на сетку второго триода, изменяется величина его сопротивления. В результате меняется глубина отрицательной обратной связи для первого триода. Так, например, при возрастании внутреннего сопротивления второго триода отрицательная связь возрастает, а усиление первого триода снижается. В данной схеме импортный двойной триод типа ЕСС82 можно заменить, например, отечественной лампой 6Н1П.

В высококачественной ламповой звуковоспроизводящей аппаратуре широкое распространение получили регуляторы громкости с тонкомпенсацией. Необходимость применения таких регуляторов громкости объясняется тем, что чувствительность уха человека изменяется в зависимости от частоты и громкости воспринимаемого звукового сигнала. Так, например, лучшая чувствительность соответствует восприятию составляющих средних частот по сравнению с составляющими высших и особенно низших частот. Поэтому при уменьшении громкости у слушателя появляется субъективное ощущение, что одновременно уменьшается уровень составляющих высших и низших частот воспроизводимого диапазона. В результате проведенных в этой области исследований были составлены определенные зависимости, которые получили название кривых равных громкостей.

Чтобы при разных уровнях громкости все частотные составляющие воспроизводимого сигнала воспринимались одинаково, в высококачественной звуковоспроизводящей аппаратуре применяются регуляторы громкости, в которых при уменьшении громкости осуществляется необходимый подъем составляющих низших и высших частот, а с увеличением громкости подъем составляющих граничных частот уменьшается. Такие регуляторы называют тонкомпенсированными или частотно-зависимыми. Естественно, разработчики стремятся к тому, чтобы характеристики тонкомпенсированных регуляторов громкости были как можно ближе к кривым равной громкости.

Самым простым вариантом построения частотно-зависимого регулятора громкости является объединение непосредственно регулятора громкости и регулятора тембра с использованием спаренных переменных резисторов. Принципиальные схемы таких регуляторов громкости приведены на рис. 5, а и 5, б. Нередко в тонкомпенсированных регуляторах громкости используются потенциометры с одним или с двумя отводами, к которым подключаются соответствующие RC-цепочки. Принципиальная схема одного из вариантов такого регулятора громкости приведена на рис. 5, в.

Рис.5. Принципиальные схемы простых тонкомпенсированных регуляторов громкости

Токомпенсированный регулятор громкости может иметь и ступенчатую регулировку. К достоинствам таких регуляторов, помимо отсутствия потенциометра соответствующей конструкции, следует отнести возможность выбора значительно более широкого диапазона регулировки. Принципиальная схема одного из вариантов входного каскада лампового УНЧ с таким регулятором приведена на рис. 6.

Рис.6. Принципиальная схема тонкомпенсированного регулятора громкости со ступенчатой регулировкой

Тонкомпенсация в регуляторах громкости может быть реализована и с помощью специальных фильтров. Принципиальная схема регулятора с фильтром тонкомпенсации приведена на рис. 7.

Рис.7. Принципиальная схема регулятора громкости с фильтром тонкомпенсации

В рассматриваемой схеме фильтр тонкомпенсации представляет собой двойной Т-мост, коэффициент передачи которого для составляющих средних частот воспроизводимого диапазона меньше, чем коэффициент передачи для составляющих низших и высших частот. В режиме максимальной громкости движок потенциометра R4 должен находиться верхнем по схеме положении, при этом фильтр замкнут накоротко и не влияет на форму частотной характеристики. Для уменьшения громкости движок потенциометра R4 следует перемещать вниз, при этом уменьшается шунтирующее действие верхней части данного потенциометра на фильтр. В результате через фильтр начинают проходить составляющие определенных частот в соответствии с его частотной характеристикой. Поскольку составляющие средних частот ослабляются этим фильтром в большей степени, чем составляющие крайних частот, изменение частотной характеристики усилителя происходит по зависимости, близкой к кривым равной громкости. Потенциометр R4 должен иметь логарифмическую характеристику (тип В).

В этой части статьи поговорим об аспектах согласование регулятора громкости Никитина с усилителем.
Для получения заявленных параметров, снижения искажений и обеспечения плавности регулирования громкости регулятор Никитина обязательно должен быть согласован с входным сопротивлением усилителя!

Рассмотрим по порядку:

  1. Общие вопросы согласования регулятора.
  2. Согласование регулятора со схемами на ОУ и транзисторами.
  3. Согласование регулятора с ламповыми каскадами.

1. Общие вопросы согласования.

Для рассмотрения общих нюансов согласования регулятора громкости Никитина с усилителями обратимся к статье «Искажения, возникающие в каскадах на ОУ при регулировании уровня сигнала», автор В.А.Свинтенок.

Целиком приводить её не буду (кому интересно, тот легко найдёт её на просторах Интернета). В ней автор, проведя не совсем корректные и неполные эксперименты, подтвердил известный факт, что усилители в инвертирующем включении звучат лучше и имеют меньшие искажения, чем усилители в неинвертирующем включении. Эту особенность давно заметили и попытались объяснить Дуглас Селф и Николай Сухов (автор того самого «усилителя высокой верности»). Последний пришёл к выводу, что подобный эффект вызван тем, что в неинвертирующем включении переход б-э входного транзистора оказывается вне цепи общей отрицательной обратной связи, из-за чего не компенсируется ёмкость Миллера. Соответственно, для усилителя с полевыми транзисторами на входе подобный эффект либо значительно слабее, либо не наблюдается вовсе.

Та вот, в экспериментах описанных в статье поучаствовал и регулятор громкости Никитина. Порой, правда, не совсем корректно. Не понятно, зачем нужно было снимать характеристики ненагруженного регулятора??? Ещё раз повторю, что для обеспечения заявленных параметров (шаг регулировки, равномерность регулировки, диапазон регулировки и т.д.) регулятор обязательно должен быть согласован с нагрузкой !!!

Примечание: в указанной статье регулятор громкости Никитина чаще упоминается как «регулятор громкости лестничного типа» .

Итак, наиболее интересные и полезные выводы из статьи:

...Как было показано выше, неинвертирующее включение ОУ с резисторами на входах не позволяет реализовать предельный потенциал у большинства микросхем по нелинейным искажениям. Инвертирующее включение дает ряд лучших характеристик: меньшие нелинейные искажения, более короткий и «мягкий» спектр искажений, отсутствие «порога» (резкого возрастания высших гармоник в спектре), на искажения и спектр не оказывает влияние внутреннее сопротивление источника сигнала.

Стандартное построение регулятора уровня с буферным повторителем в инвертирующем включении представлено на Рис.15. На практике такая схема используется довольно редко и связано это со следующим. Чтобы сохранить входное сопротивление схемы на уровне значения сопротивления Rп и закон изменения сопротивления от угла поворота ручки потенциометра необходимо, чтобы для резисторов схемы выполнялось условие R > Rп (в 3 и более раз). Чтобы получить приемлемое входное сопротивление схемы приходится выбирать достаточно высокоомные резисторы R. А это ведет в свою очередь к повышенному уровню шума схемы.

Тем не менее, рассмотрим эту схему в качестве отправной схемы для этого типа включения.

Для схемы, представленной на Рис.15 максимальные искажения будут в верхнем положении движка потенциометра Rп и соответствуют повторителю в инвертирующем включении. Далее по мере снижения уровня сигнала на выходе потенциометра пропорционально начнут снижаться и искажения на выходе ОУ. В связи с чем, охарактеризовать поведение активного элемента в регуляторе достаточно описанием его в одной точке – в точке наблюдения максимальных искажений.

В Таблице 10 приведены коэффициенты гармоник для входного напряжения 2 и 4 вольта для инвертора собранного по схеме Рис.15 при номинале резисторов R = 5кОм и при коэффициенте передачи регулятора Кр = -1.

Таблица 10.

Таблица 10 (1)

Тип мс

OPA 2134

AD 8620

NE 5532

OP 275

U вх(в)

К г7 %(5к)

0,000066

0,000035

0,000062

Таблица 10 (2)

Тип мс

LME 49860

AD 8066

AD 826

JRC 2114

U вх(в)

К г7 %(5к)

0,000012

0,000032

0,000024

0,000092

0,000039

Таблица 10 (3)

Тип мс

THS 4062

AD 8599

LT 1220

AD 825

U вх(в)

К г7 %(5к)

Таблица 10 (4)

Тип мс

LME 49710

LM 6171

U вх(в)

К г7 %(5к)

0,000013

5,2*10 -6

Анализируя данные приведенные в Таблице 10 можно заметить, что выбор микросхем для построения регуляторов уровня сигнала с малыми искажениями значительно шире.

Лучшие микросхемы в этом включении LME49860 , LME49710 и AD8066 . Помимо прекрасных характеристик по нелинейным искажениям у них и прекрасный спектр искажений: 2 – 3 гармоники при входном напряжении четыре вольта.

Прекрасные характеристики и у JRC2114 , OP275 и NE5532 . Спектры у первых двух микросхем содержат 4 – 5 гармоник при входном напряжении 4 вольта, а вот у NE5532 он длинный, с провалом. Ее лучше использовать при входном напряжении меньше четырех вольт.

Хорошие спектры (четыре гармоники) при входном напряжении 4 вольта и у AD826 , THS4062 , LT1220 . Микросхемы OPA2134 , AD5599 и AD8620 лучше использовать при входном напряжении два и менее вольта. У LM6171 в инвертирующем включении искажения существенно выше, а характер и поведение спектра от напряжения питания такое же что и в неинвертирующем включении.

Как было выше сказано, на практике реализовать высокий потенциал по искажениям у данного типа регулятора проблематично из-за присущих этому включению недостатков. Так для получения входного сопротивления близкое к 10кОм необходимо в схеме инвертора выбирать довольно высокоомные резисторы (более 30кОм), что приведет к существенному росту шума регулятора и сократит количество микросхем способных на достаточно качественном уровне работать в этом включении. В значительной мере эти проблемы можно решить, если в этом включении использовать регулятор уровня сигнала «лестничного» типа...

…для осуществления этого необходимо нагрузочный резистор регулятора отключить от общего провода и подключить к инвертирующему входу ОУ, как это показано на Рис.16.

Все достоинства этого регулятора в таком включении сохраняются. При коэффициенте передачи регулятора 0дБ схема представляет собой инвертор с единичным усилением и с входным сопротивлением 10кОм. Максимальные искажения такого регулятора соответствуют и максимальному сигналу на входе инвертора и будут соответствовать значениям данных приведенных в Таблице 10. На входе регулятора можно включить RC цепочку для ограничения высоких частот без опасения увеличения нелинейных искажений. По мере снижения напряжения будут снижаться и искажения, что является нормальным и естественным свойством регулятора в этом включении.

Максимальный коэффициент ослабления сигнала и частотная характеристика определяются максимальным затуханием регулятора и его частотной характеристикой

Забегая несколько вперед, можно сказать, что это одно из лучших решений позволяющее получить минимально достижимые нелинейные искажения с «мягким» и коротким спектром. В этом включении достижимы искажения, не превышающие уровень единиц стотысячных при 4 вольтах на входе с монотонным снижением искажений по мере увеличения коэффициента затухания регулятора.

Единственно «не сильное» место регулятора – шумы. Они будут определяться резисторами (эквивалентное значение не более 6кОм) и коэффициентом передачи инвертора по шуму (равное двум)…

Надо также отметить, что в ходе экспериментов при неинвертирующем включении усилителя автором был выявлен рост искажений при увеличении монтажной ёмкости регулятора. Поэтому при сборке схемы в таком варианте следует уделить особое внимание элементам регулятора, их расположению и способу монтажа!

2. Согласование регулятора громкости Никитина со схемами на ОУ и транзисторах.

Пример согласования регулятора громкости Никитина с неинвертирующим усилителем:

увеличение по клику

Здесь входное сопротивление усилителя определяется значением резистора R11. Для согласования с регулятором громкости его номинал выбран 10 кОм. В случае необходимости получения большего усиления от ОУ можно увеличить номинал резистора R12.

Напомню, что в данной схеме не полностью реализуется потенциал операционного усилителя (по параметрам и качеству звучания) и схема довольно чувствительна к ёмкости (качеству) монтажа. Поэтому её рекомендуется использовать только в случае крайней необходимости.

При использовании ОУ в инвертирующем включении указанные выше недостатки устраняются:

увеличение по клику

Здесь входное сопротивление усилителя определяется номиналом резистора R11. Для согласования с регулятором громкости Никитина его значение выбрано 10 кОм.

Внимание! В приведенных схемах номиналы резисторов указаны для согласования регулятора громкости Никитина с нагрузкой 10кОм . Если регулятор рассчитан на другую нагрузку (например с помощью таблицы из ) номиналы указанных резисторов надо изменить на соответствующие.

Пример согласования регулятора с реальным усилителем:

на рисунке представлен входной каскад модернизированного усилителя мощности В.Короля:

Каскад выполнен по двухтактной схеме, и при идентичных параметрах комплиментарных транзисторов Т1 и Т2 за счёт взаимной компенсации базовых токов входное сопротивление такого каскада будет определяться, в основном, номиналом резистора R1.

Для согласования такого усилителя с регулятором громкости Никитина (на 10кОм) достаточно установить резистор R1 номиналом 10кОм:

увеличение по клику

3. Согласование регулятора громкости Никитина с ламповыми каскадами.

Подозреваю, что некоторым читателям входное сопротивление регулятора (10кОм) может показаться относительно низким. Хотя в большинстве современных аппаратов (звуковые карты, CD/DVD проигрыватели) на выходе стоят буферы, которые позволяют подключать нагрузку не менее 2кОм, однако…

Вдруг кто-то захочет нагрузить ламповый каскад на данный регулятор.

В этом случае, если на выходе отсутствует катодный повторитель, для согласования относительно низкого входного сопротивления регулятора с высоким выходным сопротивлением схемы (резистивного лампового каскада или SRPP) можно использовать буферный каскад, предложенный Зызюком (его надо включить между выходом лампового каскада и регулятором громкости):

Настройка схемы (выполняется при закороченном входе – свободный вывод С1 соединить с «общим» проводом схемы):

  1. резистором R4 выставляется ток покоя VT2 равный 35мА.
  2. резистором R1 выставляется «0» постоянного напряжения на выходе схемы.

При указанном токе и напряжениях радиаторы для транзисторов не требуются.

А ещё лучше будет использовать « », подобрав входное и выходное сопротивления.

Удачи в творчестве, качественного звука и работающих схем!

РЕЗИСТОРЫ ПОСТОЯННЫЕ

Прежде всего небольшая напоминалка об обозначениях резисторов:

Как и любой другой элемент у резисторов есть такой параметр как собственный шум, который складывается из теплового и токового шума.
Токовый шум обусловлен дискретной структурой резистивного элемента. При протекании тока возникают местные перегревы, в результате которых изменяются контакты между отдельными частицами токопроводящего слоя и, следовательно, флюктуирует (изменяется) величина сопротивления, что ведет к появлению между выводами резистора ЭДС токовых шумов. Токовый шум, также как и тепловой, имеет непрерывный спектр, но интенсивность его увеличивается в области низких частот, и величина значительно превышает величину теплового шума.
Все эти эффекты зависят от плотности тока. Чем она больше, тем больше проявление этих неприятностей. Поэтому соединив 2 резистора параллельно (увеличив площадь сечения и уменьшив плотность тока) все эти эффекты уменьшаются. Тоже самое можно сделать взяв резистор большей габаритной мощности. У него сечение проводящего слоя больше и плотность тока в нем будет меньше. Соединив 2 резистора последовательно шумы суммируются, поэтому крайне не желательно использовать последовательное соединение резисторов в каскадах имеющих большой коф усиления. Суммарное сопротивление двух резисторов соединенных параллельно вычисляется по формуле:

Этот шум зависит от многих факторов, в том числе и от конструкции конкретного резистора, включая резистивный материал и в особенности концевые соединения. Вот типичные значения избыточного шума различных типов резисторов, выраженные в микровольтах на вольт приложенного к резистору напряжения (приводится среднеквадратичное значение, измеренное на одной декаде частоты):

Углеродно-композитные От 0,10 мкВ до 3,0 мкВ

Углеродно-пленочные От 0,05 мкВ до 0,3 мкВ

Металлопленочные От 0,02 мкВ до 0,2 мкВ

Проволочные От 0,01 мкВ до 0,2 мкВ

Однако не совсем ясно на каком основании были сделаны выводы о том,что С5-5 или С5-16 не содержат индуктивности и наиболее ярким примером является механическое вскрытие:

Наиболее приемлемым вариантом считается использование для этих целей резисторов МЛТ-2, однако шансы от избавления от индуктивности не сто процентны - на верхнем резисторе четко просматривается спираль из резистивного слоя:

Поэтому при покупке МЛТ-2 следует обратить внимание на их внешний вид, и если окажется, что резистивный слой в виде спирали это совсем не повод впадать в панику - да, будет иметь место индуктивность, но ее величина слишком мала - у представленного на фото резистора на 100 Ом индуктивность составила 70 мкГн, а для резисторов сопротивлением 1, 0,68, 0,47, 0,33 и 0,22 Ома оно будет в десятки раз меньше.

РЕЗИСТОРЫ ПЕРЕМЕННЫЕ

Кроме постоянных резисторов в усилителях используются переменные - для регулировки громкости, баланса, при необходимости тембра. От качества этих резисторов зависят в основном дополнительные шумы, вносимые изменяющимся сопротивление контакта между резистивным слоем и движком.

Кроме прочих параметров у переменных резисторов есть еще один - группа. Этот параметр показывает по какому закону изменяется сопротивление на движке резистора в зависимости от его положения, например для резисторов роторного типа это будет угол поворота. У отечественных резисторов различают 3 основные и две вспомогательные группы:

Группа А - линейная зависимость изменения сопротивления от положения движка, группа Б - логарифмическая зависимость, В - обратнологарифмическая. Самые популярные - "А" и "В". "А" используется для линейных регулировок, например в терморегуляторах, регуляторах оборотов двигателей. "В" - оптимальнейший вариант для регулировки громкости, поскольку человеческое ухо увеличение громкости воспринимает по логарифмическому закону. Вспомогательные группы И и Е обычно используются в паре на сдвоенных резисторах - один резистор группы "И", второй "Е", что делает такой резистор идеальным для регулировки баланса в стерео усилителях.
У импортных переменных резисторов 4 группы:

Тут сразу следует обратить внимание на то, что у импортных группа А имеет обратнологарифмическую зависимость, т.е. для регулировки громкости требуется как раз резисторы группы "А", а группа B имеет линейную зависимость. Группа W используется для регулировки баланса - обычно движок резистора соединяется с общим проводом, а резистивный слой выступает в роли аттенюатора, совместно с постоянными токоограничивающими резисторами.
На некоторых подвидах переменных резисторов, предназначенных для регулировки громкости делаются отводы от середины резистивного слоя, гораздо реже делаются отводы с соотношением 1/ и 2/3. Данные резисторы удобны для реализации тонкомпенсированных регуляторов громкости. Тонкомпенсация позволяет выравнять иллюзию изменения АЧХ тракта при малых и больших громкостях - на малой грокости кажется, что НЧ и ВЧ составляющие сигнала уменьшаются, поэтому и вводится подъем НЧ и ВЧ в самом регуляторе. Один из вариантов схемы тонкомпенсированного регулятора громкости и изменения его АЧХ приведены ниже:

Основных видов переменных резисторов две - роторные и движковые. И те, и другие имеют в своем составе множество подвидов, поэтому для краткости в таблице приведены только популярные:

Переменный резистор серии R12, бывают сдовоенные, бывают с выключателем. Ближайший сосед по конструктиву выполнен на текстолитовой основе. Широко используются в переносной аудиоаппаратуре. Бывают для вертикального и горизонтального монтажа. Надежность оставляет желать лучшего.

Серия R12XX - по конструктиву состоит из гетинаксовой "подковы" с нанесенным углеродистым резистивным слоем. Для большего понимая следйет расшифровать обозначение:
R - ROTOR, т.е. роторный, следующие две цифры обозначают диаметр , а вот дальше уже по спецификации. Бывают одинарные и сдвоенные. Широко используются в переносной аудиоаппаратуре и в автомобильной низкой ценовой категории. Бывают для вертикального и горизонтального монтажа.

Серия RK11ХХ, такого же конструктива серия RK14ХХ, бывают для вертикального и горизонтального монтажа, первые цифры после букв обозначают размер: , бывают сдвоенные и одинарные, в переносной аудиоаппаратуре не очень популярны, но попадаются.

RK12ХХ популярны в стационарной средней ценовой категории и переносной аппаратуре высокого класса, частенько мелькали в автомагнитолах. Бывают одинарные, сдвоенные, счетверенные. Размер подковы с резистивным слоем может достигать 24 мм, разумеется в названии первыми цифрами будет 24. Могут быть с выключателем, некоторые модели этого вида имеют отвод от середины.
Для увеличения надежности и уменьшения сопротивления между контактом движка и резистивным слоем лучше использовать резисторы бОльшего диаметра, если нет ограничений по габаритам.

Переменные резисторы движкового (ползункового) типа содержат в своей абривиатуре либо первую, либо вторую букву S - SLIDE. Бывают одинарными, сдвоенными, с отводом от середины и без него. Первые две цифры после букв обозначают длину хода движка, например у верхнего SL101 движок перемещается на 10 мм, а у нижнего SL20V1 - 20 мм. Обычно в среднем положении движок резисторов слегка фиксируется.

Потенциометры DACT и ALPS по конструкции представляют собой многопозиционный галетный переключатель с установленными SMD резисторами.

Номиналы резисторов обеспечивают обратнологарифмическую зависимость изменения сопротивления при повороте оси потенциометра. Контакты движка и "подковы" выполнены из материалов повышенной износостойкости и обеспечивают наилучший контакт на протяжении ОЧЕНЬ продолжительного времени. Разумеется стоимость подобных потенциометров довольно высокая.

Есть еще одна группа потенциометров, которую можно назвать "удачной", причем в прямом смысле этого слова - это потенциометры снятые со старых усилителей мощности нулевой группы сложности. Буквально два месяца назад был УДАЧНО приобретен такой потенциометр у дедуни-старьевщика всего за 50 рублей. Замасленен, запылен, но контакты в ОЧЕНЬ хоршем состоянии.
Здесь рассмотрены резисторы наиболее популярные.

ПРОВОДА И РАЗЪЕМЫ

После того как все платы готовы, проверены и вымыты их необходимо установить в корпус и соединить между собой, а для этого требуются провода и "соединители".
Наилучшим соединением является пайка, но это далеко не всегда удобно, да пайка бывает разная.
Если используется соединение пайкой, то для пайки необходим припой. В радио-электронной аппаратуре (РЭА) используются свинцово-оловянные припои трех основных марок:
ПОС-40 - содержит 40 % олова и 60 % свинца, используется... Да лучше бы не использовался...
ПОС-60 - самый популярный припой, используется для монтажа элементов РЭА, содержит 60 % олова и 40 % свинца. Имеет хорошую растекаемость, находясь в жидком состоянии, со временем может приобрести оксидную пленку и стать матовым;
ПОС-90 - припой состоящий из 90 % олова и почти 10 % свинца (остальное на технологические примеси). Довольно часто называется пищевым, поскольку содержание свинца минимально и может использоваться для пайки бытовых предметов, контактирующих с пищей. Качество пайки довольно высокое, но необходимо несколько большая температура паяльника. Медное жало паяльника выгорает гораздо быстрее, чем при использовании ПОС-60. Поверхность ПОС-90 практически не окисляется от влаги.
Есть еще один вид припоя, именуемый безсвинцовым или экологически чистым. Химический состав искать даже не захотелось - этой светлосерой субстанцией запаяно большинство электронных приборов низкой ценовой категории, имеет более высокую температуру плавления, по сравнению с ПОСами, находясь в жидком состоянии имеет низкую смачиваемость, что затрудняет облуживание выводов электронных компонентов и снижает качество пайки. Механические свойства на уровне ПОС-40.
При пайке практически всегда используются флюсы - вещества создающие на поверхности спаиваемых деталей тонкую пленку, предохранающую от окисления, которое при высоких температурах происходит гораздо быстрее. Химических составов флюсов довольно много, большинство основано на обычной сосновой канифоли, которая может использоваться при пайке и сама по себе.
Для улучшения качества пайки рекомендуется зачищенные жилы многожильных проводов свить как можно плотней между собой - таким образом создается максимально возможное количество точек соприкосновения, существенно уменьшающих сопротивление контактов.
Использовать разъемы в силовой части усилителя крайне не желательно, даже если они самозажимные или винтовые. Подобное соединение автоматически удваивает количество соединений:
1. Разъем припаивается к плате;
2. Провод прикручивается к разъему
Если же используются раъемы имеющие "папу-маму", то количество соединений утраивается:
1. Разъем "папа" припаивается к плате;
2. Точка контакта ответных частей "папа-мама";
3. Разъем "мама" припаивается к проводам
Конечно же разъемы существенно упрощают доступ с модулям устройства, но они же и снижают надежность, поэтому разъемы лучше использовать только на слаботочных цепях и сократить их количество до минимально возможного.
Разумеется, что можно возразить - мол достаточно много устройств собирается на разъемах и ни чего страшного не происходит.
Ну для начала следует осознать, что при сборке в заводских условиях далеко не последнее место занимает технологичность - удобство сборки для повышения количества выпускаемой продукции и уж потом рассматривается надежность используемых соединителей.
С другой стороны "ни чего страшного" не происходит:

ПРОВОДА

В усилителях провода можно разделить на две основные группы - сигнальные и питания, причем под питание можно определить и провода, по которым производится управление, например реле селектора входов. Сигнальные провода это провода по которым собственно и проходит звуковой сигнал от входа до выхода.
В низковольтной сигнальной части усилителя лучше использовать экранированные провода, причем лучше в изоляции, поскольку эранированный провод без изоляции может соприкаснуться с корпусом, ражиатором и т.д., что неизбежно повлечет создание "земляной петли" - эффекта возникающего за счет соединения общего провода в разных точках и дающего возможность образования рамочной антенны, собирающей многие наводки и импульсные помехи.
Однако экранированные провода тоже бывают разными и самые доступные это так называемый "НЧ провод для видео", продается либо сдвоенным, либо счетверенным.

Перед покупкой лучше произвести небольшое анатомическое вскрытие и убедится, что провод является проводом, а не жалкой пародией на него, да еще и сделанной из какого то сталистого сплава, который ОЧЕНЬ тяжело паяется:

Провод должен иметь однородную изоляцию центральной жилы и довольно плотную, эластичную и не крошащуюся оплетку:

Причем чем плотнее оплетка тем лучше, в идеале жилы оплетки должны быть сплетены в сетчатую трубку, но в последнее время такой провод попадается довольно редко:

Ну совсем хорош провод "микрофонный", сильно напоминающий кооксиальный кабель, с однородной, довольно толстой изоляцией центральной жилы, существенно снижающей емкость кабеля и плотной оплеткой. Довольно часто попадаются "микрофонные" провода эконом-класса, в которых жидкая оплетка, но экранировка сохраняется за счет использования фольги.

В качестве проводов питания и управления лучше использовать медный многожильный провод из расчета 4-5 А на мм кв. Теоритически можно использовать и большую напряженость - провод будет успевать остывать, но только сильно заниженное сечение будет способствовать бОльшему падению напряжения, следовательно напряжение питания будет сильно зависеть от протекающего тока.
Для предварительных каскадов это, теоритически, не так критично - они потребляют не большие токи и компенсировать падение можно увеличением емкости конденсаторов фильтра питания, установленных непосредственно на плате модуля. Однако имеет ли смысл бороться с проблемой, если есть возможность обойти ее?
Для оконечных каскадов провалы питания более болезненны - мало того, что при пике музыкального сигнала происходит разрядка конденсаторов фильтра питания, которых обычно минимальная достаточность, так еще и тонкие провода создают дополнительный провал напряжения. Отсюда и возникает более раний клиппинг, который уже будет слышно.
Кроме питания к силовым проводам можно отнести провода выходящие непосредственно с выхода усилителя мощности, идущие на клеммы подключения, а дальше уже непосредственно на АС.
Вот тут уже возникает точка споров и недоразумений, поскольку практически все рекомендуют использовать для этих целей акустический провод (безкислородную медь), но вот причины называются порой самые абстрактные.
Тут следует остановиться подробней на самых популярных:

Меньшее активное сопротивление

Проволока медная изготовляется следующих марок:

Теоритически вроде как все верно, но...
,
где R - сопротивление проводникового материалла (ом)
l - длина провода в метрах
p - электрическое удельное сопротивление материала
A - площадь поперечного сечения
ПИ - математическое число
d - номинальный диаметр провода в миллиметрах
Берем 10 метров сечением 1,5 мм кв получаем сопротивление для безкислородной меди 0,1147 Ома, для обычной 0,12 Ома. Даже при нагрузке в 2 Ома отношение сопротивлений более чем в 16, однако ни какой нормальный человек для двухомного динамика не будет использовать сечение 1,5 мм кв - минимум 2,5 мм кв.

Снижение СКИН-ЭФФЕКТА

Разумеется, что на высоких частотах электроны выталкиваются к поверхности проводника и толщина скин-слоя для частоты 100 кГц составляет 0,2 мм. Однако наличие множества НЕ ИЗОЛИРОВАННЫХ между собой жил в проводе делает его ОДНИМ проводником, диаметр которого пропорционален суммарному сечению, а не сечению каждой жилы. Акустический кабель, действительно компенсирующий СКИН ЭФФЕКТ выглядит несколько иначе, чем его привыкли представлять в перефирийных аудиомагазинах:

Стоимость этого кабеля будет совсем не маленькой. Впрочем о стоимости - здесь еще есть зависимость от того, где собственно этот кабель покупать. Для примера две цены одного и того же кабеля:

В аудиомагазине стоимость провода составляет 96 рублей за метр, а в магазинах, занимающихся теплыми полами и прокладывающих под полами акустический кабель в виде допуслуги не превышает 20 руб за метр.
Выйти из сутуации можно, если уж ОЧЕНЬ хочется получить кабель без СКИН-ЭФФЕКТА - изготовить его самостоятельно из медного обмоточного провода ПЭВ-1 (ПЭВ-2 тоже подойдет, если стоит одинаково). Провод вымеряется необходимой длины и складывается в необходимое количество жил из расчета 30 Вт выходной мощности усилителя на 1 мм кв сечения провода. Затем жгут свивается, но не плотно и обматывается по всей длине киперной лентой:

После этого обе жилы, идущие на АС обматываются изолентой, можно отдельно, можно сразу две. Столь тщательная изоляция необходима для уменьшения емкости между проводами и улучшения механических свойств изоляции - лак на проводе не очень прочен.

Из личных впечатлений:
По сравнению с обычным акустическим кабелем самодельный выигрывает в области ВЧ и это проявляется наиболее ярко при мощностях выше 100 Вт.
Однако звук гораздо приятней при использовании широкополосной динамической головки и усилителя в режиме "Источник Тока, Управляемый Напряжением" (ИТУН). При использовании дополнительного блока, именуемого "Компенсатором Длины Провода" (КДП) звук так же отличался в лучшую сторону.

Причем усилители с ИТУН и КДП подключались проводом ПВС 2х2,5, а типовой усилитель акустическим магазинным и самодельным:

И ЧЕ ТЕПЕРЯ?!

Для начала подумать, ведь у безкислородной меди есть один довольно серьезный плюс - она оксиляется не так интенсивно, как ПВС, следовательно ее можно использовать там где имеет место повышенная влажность. Толщина и прочность изоляции гораздо выше, чем у ПВС, следовательно с ним можно обращаться не так бережно, а и в случае прокола изоляция стремится "затянуться". Акустический провод гораздо мягче ПВС, следовательно его можно использовать там, где гибкость провода имеет значение в силу труднодоступности мест укладки.
Вывод напрашивается сам собой - акустический провод идеален для использования в автомобильном аудио и на гастролях. В бытовых комплексах можно обойтись и ПВС, причем даже увеличение сечения даст некоторую экономию по сравнению с акустическим меньшего сечения.
В защиту ПВС можно еще сказать, что разные производители для производства провода используют жилки разного диаметра - им главное выдержать площадь сечения. Следовательно просмотрев провод в нескольких конкурирующих магазинах можно выбрать провод с более тонкими жилками, следовательно более мягким.

Ну и конечно же смотреть что именно вы собираетесь купить, чтобы не получилось недоразумения, предлагаемого - на фото одно, а продают совсем другое, если Вам внушают, что провод избавлен от скин-эффекта, то помните, что такой кабель выглядит несколько иначе:

Литература:
http://www.electroclub.info
http://dart.ru
http://www.magictubes.ru
http://easyradio.ru
http://people.overclockers.ru
http://tech.juaneda.com
http://rexmill.ucoz.ru
http://ivatv.narod.ru/
http://irbislab.ru
http://www.audio-hi-fi.ru
http://diyfactory.ru
http://www.diyaudio.ru
http://www.bluesmobil.com
http://rezistori.narod.ru
http://sgalikhin.narod.ru