Паренхима: печени, почек, поджелудочной железы. Паренхима

Основные ткани составляют основную массу тела растения. Они состоят из живых, относительно мало специализированных клеток, чаще паренхимной формы, поэтому их часто называют паренхимными тканями , или паренхимой . В зависимости от выполняемой функции, различают несколько типов основных тканей.

Ассимиляционная ткань (хлорофиллоносная паренхима, хлоренхима) выполняет функцию фотосинтеза. Она располагается в основном в листьях и стеблях травянистых растений сразу за эпидермой. Клетки живые, тонкостенные, чаще паренхимной формы. 70-80% объема протопласта составляют хлоропласты. Характерно наличие межклетников, которые облегчают газообмен ( рис. 3.2).

Рис. 3.2. Поперечный срез листа красавки : 1 – клетки ассимиляционной ткани; 2 – клетки, заполненные кристаллическим песком кальция оксалата.

Запасающая паренхима служит местом отложения питательных веществ (крахмала, белков, жирных масел). Запасные питательные вещества могут откладываться в живых клетках любой ткани, но особенно ярко эта функция проявляется у специализированных запасающих тканей, хорошо развитых в семенах, корнях, подземных побегах (рис. 3.3.А ). Состоят запасающие ткани из живых тонкостенных клеток, чаще паренхимной формы.

Разновидностью запасающей ткани является водоносная паренхима, выполняющая функцию запасания воды. Она состоит из крупных живых тонкостенных клеток, как правило, паренхимной формы. Вода запасается в вакуолях за счет большого содержания слизей, обладающих высокой водоудерживающей способностью. Водоносная паренхима имеется в стеблях и листьях суккулентов (кактусы, агавы, алоэ), у многих растений солончаков (солерос, анабазис, саксаул), в листьях многих злаков. Много воды содержится в запасающих тканях луковиц и клубней.

Воздухоносная паренхима (аэренхима) выполняет функцию вентиляции, снабжая ткани и органы кислородом. Она хорошо развита в погруженных органах водных и болотных растений (кувшинка, кубышка, аир, вахта). Аэренхима состоит из живых клеток различной формы и крупных межклетников (рис. 3.3.Б ).

Рис. 3.3. Запасающая паренхима клубня картофеля (A ) и аэренхима стебля рдеста (Б): 1 – межклетник.

Механическая паренхима занимает промежуточное положение между основными и механическими тканями. Это живые паренхимные клетки со слегка утолщенной одревесневшей клеточной стенкой.

Неспециализированная паренхима (основная паренхима, неспецифическая паренхима) представляет собой живую паренхимную ткань без выраженной функции. Эта ткань всегда присутствует в теле растения, составляя его большую часть.

3.4. Покровные ткани

Покровные ткани располагаются на поверхности органов растений на границе с внешней средой. Они состоят из плотно сомкнутых клеток и защищают внутренние части растения от неблагоприятных внешних воздействий, излишнего испарения и иссушения, резкой перемены температуры, проникновения микроорганизмов, служат для газообмена и транспирации. В соответствии с происхождением из различных меристем выделяют первичные и вторичные покровные ткани.

К первичным покровным тканям относят: 1) ризодерму , или эпиблему и 2) эпидерму .

Ризодерма (эпиблема) – первичная однослойная поверхностная ткань корня. Образуется из протодермы – наружного слоя клеток апикальной меристемы корня. Основная функция ризодермы – всасывание, избирательное поглощение из почвы воды с растворенными в ней элементами минерального питания. Через ризодерму происходит выделение веществ, действующих на субстрат и преобразующих его. Клетки ризодермы тонкостенные, с вязкой цитоплазмой и большим количеством митохондрий (минеральные ионы поглощаются активно, с затратой энергии, против градиента концентрации). Характерной особенностью ризодермы является образование у части клеток корневых волосков – трубчатых выростов, в отличие от трихомов не отделенных стенкой от материнской клетки (рис. 3.4). Корневые волоски увеличивают поглощающую поверхность ризодермы в десять и более раз. Волоски имеют длину 1-2 (3) мм. Ризодерму часто рассматривают как всасывающую ткань.

Рис. 3.4. Кончик корня ожики многоцветковой: 1 – корневой волосок.

Эпидерма - первичная покровная ткань, образующаяся из протодермы конуса нарастания побега. Она покрывает листья, стебли травянистых и молодых побегов древесных растений, цветки, плоды и семена. Основная функция эпидермы – регуляция газообмена и транспирации (испарения воды живыми тканями). Кроме того, эпидерма выполняет целый ряд других функций. Она препятствует проникновению внутрь растения болезнетворных организмов, защищает внутренние ткани от механических повреждений и придает органам прочность. Через эпидерму могут выделяться наружу эфирные масла, вода, соли. Эпидерма может функционировать как всасывающая ткань. Она принимает участие в синтезе различных веществ, в восприятии раздражений, в движении листьев.

Эпидерма - сложная ткань, в ее состав входят морфологически различные типы клеток: 1) основные клетки эпидермы ; 2) замыкающие и побочные клетки устьиц ; 3) трихомы .

Основные клетки эпидермы – живые клетки таблитчатой формы. Вид клеток с поверхности различен (рис. 3.5 ). Клетки плотно сомкнуты, межклетники отсутствуют. Боковые стенки (перпендикулярные поверхности органа) часто извилистые, что повышает прочность их сцепления, реже прямые. Эпидермальные клетки осевых органов и листьев многих однодольных сильно вытянуты вдоль оси органа.

Рис. 3.5. Эпидерма листа различных растений (вид с поверхности): 1 - ирис; 2 - кукуруза; 3 – арбуз; 4 - буквица.

Наружные стенки клеток обычно толще остальных. Их внутренний, более мощный, слой состоит из целлюлозы и пектиновых веществ; наружный слой подвергается кутинизации. Поверх наружных стенок выделяется сплошной слой кутина, образующий защитную пленку – кутикулу . Помимо кутина в ее состав входят вкрапления воска, что еще больше снижает проницаемость кутикулы для воды и для газов. Воск может откладываться в кристаллической форме и на поверхности кутикулы в виде чешуек, палочек, трубочек и других структур, видимых только в электронный микроскоп. Этот сизый, легко стирающийся налет хорошо заметен на листьях капусты, плодах сливы, винограда. Мощность кутикулы, распределение в ней восков и кутина определяют химическую стойкость и проницаемость эпидермы для газов и растворов. В условиях засушливого климата у растений развивается более толстая кутикула. У растений, погруженных в воду, кутикула отсутствует.

Клетки эпидермы имеют живой протопласт, обычно с хорошо развитой эндоплазматической сетью и аппаратом Гольджи. У большинства видов растений в цитоплазме присутствуют лейкопласты. У водных растений, папоротников, обитателей тенистых мест (гибискус) встречаются редкие хлоропласты. Эпидерма чаще всего состоит из одного слоя клеток. Редко встречается двух- или многослойная эпидерма, преимущественно у тропических растений, живущих в условиях непостоянной обеспеченности водой (бегонии, пеперомии, фикусы). Нижние слои многослойной эпидермы функционируют как водозапасающая ткань. У некоторых растений клеточные стенки могут пропитываться кремнеземом (хвощи, злаки, осоки) или содержать слизи (семена льна, айвы, подорожников).

Устьица – образования для регуляции транспирации и газообмена. Устьице состоит из двух замыкающих клеток бобовидной формы, между которыми находится устьичная щель , которая может расширяться и сужаться. Под щелью располагается крупный межклетник – подустьичная полость . Клетки эпидермы, примыкающие к замыкающим клеткам, часто отличаются от остальных клеток, и тогда их называют побочными , или околоустьичными клетками (рис. 3.6 ). Они участвуют в движении замыкающих клеток.

Рис. 3.6. Схема строения устьица.

Замыкающие и побочные клетки образуют устьичный аппарат . В зависимости от числа побочных клеток и их расположения относительно устьичной щели выделяют несколько типов устьичного аппарата (рис. 3.7 ). В фармакогнозии типы устьичного аппарата используются для диагностики лекарственного растительного сырья.

Рис. 3.7. Типы устьичного аппарата : 1 – аномоцитный; 2 – диацитный; 3 – парацитный; 4 – анизоцитный; 5 – тетрацитный; 5 – энциклоцитный.

Аномоцитный тип устьичного аппарата обычен для всех групп растений, исключая хвощи. Побочные клетки в этом случае не отличаются от остальных клеток эпидермы. Диацитный тип характеризуется двумя побочными клетками, которые располагаются перпендикулярно устьичной щели. Этот тип обнаружен у некоторых цветковых растений, в частности, у большинства губоцветных (мята, шалфей, чабрец, душица) и гвоздичных. При парацитном типе две побочные клетки располагаются параллельно замыкающим и устьичной щели. Он найден у папоротников, хвощей и ряда цветковых растений. Анизоцитный тип обнаружен только у цветковых растений, в частности, он встречается у крестоцветных (пастушья сумка, желтушник) и пасленовых (белена, дурман, красавка). В этом случае замыкающие клетки окружены тремя побочными, одна из которых заметно крупнее или мельче остальных. Тетрацитным типом устьичного аппарата характеризуются преимущественно однодольные. При энциклоцитном типе побочные клетки образуют узкое кольцо вокруг замыкающих клеток. Подобная структура найдена у папоротников, голосеменных и некоторых цветковых.

Механизм движения замыкающих клеток основан на том, что стенки их утолщены неравномерно, поэтому форма клеток меняется при изменении их объема. Изменение объема клеток устьичного аппарата происходит вследствие изменения осмотического давления. Увеличение давления происходит за счет активного поступления из соседних клеток ионов калия, а также за счет повышения концентрации сахаров, образующихся в процессе фотосинтеза. За счет поступления воды объем вакуоли увеличивается, тургорное давление растет, и устьичная щель открывается. Отток ионов совершается пассивно, вода выходит из замыкающих клеток, их объем уменьшается, и устьичная щель закрывается. У большинства растений устьица открываются в светлое время суток и закрываются ночью. Это связано с тем, что фотосинтез протекает только на свету, и для него необходим приток из атмосферы углекислого газа.

Число и распределение устьиц очень варьируют в зависимости от вида растения и экологических условий. У большинства растений их число составляет 100-700 на 1мм 2 поверхности листа. С помощью устьиц эпидерма эффективно регулирует газообмен и транспирацию. Если устьица полностью открыты, то транспирация идет с такой же скоростью, как если бы эпидермы не было вовсе (согласно закону Дальтона, при одной и той же суммарной площади отверстий скорость испарения тем выше, чем больше число отверстий). При закрытых устьицах транспирация резко снижается и фактически может идти только через кутикулу.

У многих растений эпидерма образует наружные одно- или многоклеточные выросты различной формы – трихомы . Трихомы отличаются крайним разнообразием, оставаясь вместе с тем вполне устойчивыми и типичными для определенных видов, родов и даже семейств. Поэтому признаки трихомов широко используются в систематике растений и в фармакогнозии в качестве диагностических.

Трихомы делятся на: 1) кроющие и 2) железистые . Железистые трихомы образуют вещества, которые рассматриваются как выделения. Они будут рассмотрены в разделе, посвященном выделительным тканям.

Кроющие трихомы имеют вид простых, разветвленных или звездчатых волосков, одно- или многоклеточных (рис. 3.8 ). Кроющие трихомы могут длительное время оставаться живыми, но чаще они быстро отмирают и заполняются воздухом.

Густой слой волосков отражает часть солнечных лучей и уменьшает нагрев, создает затишное пространство около эпидермы, что в совокупности снижает транспирацию. Часто волоски образуют покров только там, где располагаются устьица, например на нижней стороне листьев мать-и-мачехи, багульника. Жесткие, колючие волоски защищают растения от поедания животными, сосочки на лепестках привлекают насекомых.

Рис. 3.8. Кроющие трихомы : 1-3 – простые одноклеточные, 4 – простой многоклеточный, 5 – ветвистый многоклеточный, 6 – простой двурогий, 7,8 – звездчатый (в плане и на поперечном разрезе листа).

От трихомов, образующихся только из эпидермальных клеток, следует отличать эмергенцы , в формировании которых принимают участие и более глубоко расположенные ткани. К ним относят шипы розы, малины, ежевики, покрывающие черешки листьев и молодые побеги.

К вторичным покровным тканям относятся: 1) перидерма и 2) корка , или ритидом .

Перидерма – сложная многослойная покровная ткань, которая приходит на смену первичным покровным тканям – ризодерме и эпидерме. Перидерма покрывает корни вторичного строения и стебли многолетних побегов. Она может возникнуть и в результате залечивания поврежденных тканей раневой меристемой.

Перидерма состоит из трех комплексов клеток, различных по строению и функциям. Это: 1) феллема , или пробка , выполняющая главные защитные функции; 2) феллоген , или пробковый камбий , за счет работы которого образуется перидерма в целом; 3) феллодерма , или пробковая паренхима , выполняющая функцию питания феллогена ( рис. 3.9).

Рис. 3.9. Строение перидермы стебля бузины .

Феллема (пробка) состоит из нескольких слоев таблитчатых клеток, расположенных плотно, без межклетников. Вторичные клеточные стенки состоят из чередующихся слоев суберина и воска, что делает их непроницаемыми для воды и газов. Клетки пробки мертвые, они не имеют протопласта и заполнены воздухом. В полости клеток могут также откладываться вещества, повышающие защитные свойства пробки.

Феллоген (пробковый камбий) – вторичная латеральная меристема. Это один слой меристематических клеток, откладывающих клетки пробки наружу и клетки феллодермы внутрь органа. Феллодерма (пробковая паренхима) относится к основным тканям и состоит из живых паренхимных клеток. Однако часто феллоген работает односторонне, откладывая только пробку, а феллодерма остается однослойной (рис. 3.9).

Главная функция пробки – защита от потери влаги. Кроме того, пробка предохраняет растение от проникновения болезнетворных организмов, а также дает механическую защиту стволам и ветвям деревьев, а феллоген залечивает нанесенные повреждения, образуя новые слои пробки. Поскольку клетки пробки заполнены воздухом, пробковый футляр обладает малой теплопроводностью и хорошо предохраняет от резких колебаний температуры.

У большинства деревьев и кустарников феллоген закладывается в однолетних побегах уже в середине лета. Чаще всего он возникает из паренхимных клеток, лежащих сразу под эпидермой (рис. 3.9 ). Иногда феллоген образуется в более глубоких слоях коры (смородина, малина). Редко эпидермальные клетки, делясь, превращаются в феллоген (ива, айва, олеандр).

Газообмен и транспирация в органах, покрытых перидермой, происходят через чечевички (рис. 3.10 ). В местах чечевичек пробковые слои разорваны и чередуются с паренхимными клетками, рыхло соединенными между собой. По межклетникам этой выполняющей ткани циркулируют газы. Феллоген подстилает выполняющую ткань и, по мере ее отмирания, дополняет новыми слоями. С наступлением холодного сезона феллоген откладывает под выполняющей тканью замыкающий слой , состоящий из клеток пробки. Весной этот слой под напором новых клеток разрывается. В замыкающих слоях имеются небольшие межклетники, так что живые ткани ветвей деревьев даже зимой не отграничены наглухо от окружающей среды.

Рис. 3.10. Строение чечевички бузины на поперечном разрезе.

На молодых побегах чечевички выглядят как небольшие бугорки. По мере утолщения ветвей их форма меняется. У березы они растягиваются по окружности ствола и образуют характерный рисунок из черных черточек на белом фоне. У осины чечевички принимают форму ромбов.

У большинства древесных растений на смену гладкой перидерме приходит трещиноватая корка (ритидом) . У сосны это происходит на 8-10-м году, у дуба – в 25-30 лет, у граба – в 50 лет. Лишь у некоторых деревьев (осина, бук, платан, эвкалипт) корка вообще не образуется.

Корка возникает в результате многократного заложения новых прослоек перидермы во все более глубоких слоях коры. Живые клетки, заключенные между этими прослойками, погибают. Таким образом, корка состоит из чередующихся слоев пробки и прочих отмерших тканей коры (рис. 3.11 ).

Рис. 3.11. Корка дуба на поперечном разрезе .

Мертвые ткани корки не могут растягиваться, следуя за утолщением ствола, поэтому на стволе появляются трещины, не доходящие, однако, до глубинных живых тканей. Граница между перидермой и коркой внешне заметна по появлению этих трещин, особенно ясна эта граница у березы, у которой белая береста (перидерма) сменяется черной трещиноватой коркой. Толстая корка надежно предохраняет стволы деревьев от механических повреждений, лесных пожаров, резкой смены температур.

Паренхимные клетки, как правило, имеют округлые очертания, однако, и вытянутой формы. У растений через стенки таких клеток передвигаются вода и минеральные. В различных частях растения паренхима может видоизменяться и приобретать специализированные свойства. К подобным клеткам относится эпидермис - тонкая покровная ткань. Она состоит из одного слоя клеток и закрывает первичное тело растения целиком. Основной функцией эпидермиса является защита растений от высыхания и от проникновения болезнетворных организмов.

Ассимиляционная паренхима представляет собой специализированную ткань, содержащую большое количество хлоропластов (хлорофиллоносные клетки листа, стебля, коры). Основной ее функцией является осуществление процессов фотосинтеза. Паренхимные клетки растений обеспечивают опору тем органам, в которых они находятся. Особенно важным это свойство является для стеблей травянистых растений. Неспециализированные клетки паренхимы остаются метаболически активными, в них протекают многие процессы, важные для растительного организма. Через систему межклетников, заполненных воздухом, идет между внешней средой и живыми клетками. Паренхимные клетки также выполняют функцию хранилища питательных веществ.

Паренхима в организме человека

Большую роль играет паренхима и в . Она является главной функциональной тканью паренхиматозных органов: печени, селезенки, легких, поджелудочной и щитовидной железы. В ее состав входит соединительнотканная строма и специализированные клеточные элементы. Паренхима может быть образована различным видами ткани: эпителием (железы), кроветворной тканью (селезенка), нервными клетками (нервные узлы). Паренхима легких является частью аппарата, осуществляющего внешнее дыхание. Она состоит из легочных ацинусов. Легочные ацинусы начинаются концевой бронхиолой, которая разветвляется последовательно на дыхательные бронхиолы, альвеолярные ходы, альвеолярные мешочки, составляя альвеолярное дерево. В паренхиме легких происходит внешнее дыхание, одним из элементов которого является диффузный обмен газами.

Паренхимные клетки почек являются специфической тканью, которая выполняет основную функцию этого органа. К паренхиматозным органам относится и селезенка. Ее паренхиму представляет совокупность лимфоидных клеток. Другой орган - печень, полностью состоит из паренхиматозной ткани, которую составляют гепатоциты. Паренхима поджелудочной железы является разноструктурной тканью, которая представляет собой многочисленные дольки неправильной формы и клеточные участки округлой формы (островки Лангерганса). К болезням паренхимы относятся многочисленные доброкачественные и злокачественные новообразования, имеющие различную структуру. Среди них довольно распространен рак паренхимы почек, составляющий около 90% всех случаев опухолей этой ткани.

Она представляет собой группу специализированных тканей, заполняющих пространства внутри тела растения между проводящими и механическими тканями. Чаще клетки паренхимы имеют округлую, реже вытянутую форму. Характерно наличие развитых межклетников. Пространства между клетками совместно образуют транспортную систему - апопласт. Кроме этого, межклетники образуют «систему вентиляции» растения. Через устьица, или чечевички, они связаны с атмосферным воздухом и обеспечивают оптимальный газовый состав внутри растения. Особенно необходимы развитые межклетники для растений, произрастающих на заболоченной почве, где нормальный газообмен затруднен. Такую паренхиму называют аэренхимой.

Элементы паренхимы, заполняя промежутки между другими тканями, выполняют также функцию опоры. Клетки паренхимы живые, у них нет толстых клеточных стенок, как у склеренхимы. В связи с этим механические свойства обеспечиваются тургором. Если содержание воды падает, что приводит к плазмолизу и завяданию растения.

Ассимиляционная паренхима образована тонкостенными клетками со множеством межклетников. Клетки этой структуры содержат множество хлоропластов, в связи с этим ее называют хлоренхимой. Хлоропласты располагаются вдоль стенки, не затеняя друг друга. В ассимиляционной паренхиме происходят реакции фотосинтеза, которые обеспечивают растение органическими веществами и энергией. Результат фотосинтетических процессов - это возможность существования всех живых организмов Земли.

Ассимиляционные ткани представлены только в освещенных частях растения, от окружающей среды они отделены прозрачной эпидермой. Если на смену эпидерме приходят непрозрачные вторичные покровные ткани, ассимиляционная паренхима исчезает.

Запасающая паренхима служит вместилищем органических веществ, которые временно не используются растительным организмом. В принци?? откладывать органические вещества в виде различного рода включений способна любая клетка с живым протопластом, однако на этом специализируются некоторые клетки. Богатые энергией соединения откладываются только в вегетационный период, расходуются в период покоя и при подготовке к очередной вегетации. В связи с этим запасные вещества откладываются в вегетативных органах только у многолетних растений.

Вместилищем запасов могут быть обычные органы (побег, корень), а так же специализированные (корневища, клубни, луковицы). Все семенные растения запасают энергетически ценные вещества в семенах (семядолях). Многие растения засушливого климата, запасают не только органические вещества, но и воду. Например, алоэ запасает воду в мясистых листьях, кактусы в побегах.

Паренхима - клетки, которые наполняют железистые органы, они имеют неодинаковое строение. Состав их разный, отличается между собой. Вокруг паренхимы образуется «мешок» из стромы. Вместе они образуют единое целое.

В переводе с греческого parenchyma (то, что находится внутри), имеют свой состав. Железы наполнены эпителием. Нервные узлы – нейронами. Диффузные изменения в паренхиме — что это значит? Об этом наша статья.

Поджелудочная железа

Человек имеет органы, которые состоят из внутреннего наполнения (паренхимы) и соединяющей (стромы). Её основа — желёзки, разделённые на частички соединительной тканью. Все это находится в специальном «мешке». Её функции:

  1. Выработка ферментов для пищеварительной системы (сок железы).
  2. Гормоны (инсулин), попадающие в кровоток, принимающие участие во всех процессах организма.

Диффузные изменения

Она однообразна по своему составу. Воспаления, инфекции модифицируют её структуру, появляется соединительная, жировая ткань. Причиной диффузных трансформаций паренхимы поджелудочной могут быть:

  1. Увеличение сахара в крови.
  2. Воспаление железы.
  3. Болезни близлежащих органов (печень, желчный).
  4. Различные новообразования и опухоли.
  5. Неконтролируемое употребление алкоголя и никотина, несбалансированное питание.
  6. Стрессовые ситуации, переутомление, усталость.
  7. Генетические сбои. Возраст.

Эхогенность

  • В норме паренхима при ультразвуковом обследовании однородного состояния.
  • Никаких образований в ней не должно быть.
  • Чёткая форма с ровным контуром.
  • Размер — 35/30/25 мм.
  • Длина протока около 2 мм.

Если наблюдается повышение объёма, неровные края – можно говорить о недоброкачественной опухоли. Увеличенная непроходимость - это воспаление протока (хроническое течение панкреатита).

Эхогенность повышена . При росте показателей орган как бы уплотняется, из него выходит влага, в тканях появляются различные образования – фибромы, липомы, опухоли. Умеренные диффузные изменения, пониженный показатель, показывают воспалительный процесс или отёк тканей. Принцип эхогенности состоит в отражении ультразвуковых волн. От количества жидкости зависит его показатель.

Однородность железы . Диффузные изменения паренхимы поджелудочной могут проявляться в её составе. Увеличение органа, размытость края, неоднородность – это признаки сильного воспаления.

Оно вызывает диффузное уплотнение, образование кист, наполненных кровью или отмирающими клетками. Их размер непостоянный, он меняется в зависимости от отёков. Во время воспаления возникают гнойные кисты, раковые опухоли.

Реактивные изменения

Поджелудочная, желчный имеют единый проток. Их паренхимы тесно связаны, когда возникает воспаление в печени или в желчном – это вызывает аллергию, происходят реактивные изменения состава железы.

При панкреатите - нарушение выработки ферментов, боли, диабетические проявления (повышение сахара). Диффузные модификации способствуют трансформациям во всём органе, без появления каких-то образований или камней. Это одно из самых частых проявлений болезни поджелудочной железы.

Признаки диффузных изменений паренхимы печени


Чем грозят такие модификации? Прежде всего надо знать, что это кроветворный орган, состоящий из множества мелких капилляров, наполненных кровью. Через неё проходят желчные протоки, доставляющие желчь.

Патологию органа можно определить эхо-признаками. В течение времени они претерпевают изменения – это постоянный процесс. Если нарушена работа органа под воздействием неблагоприятных условий, её клетки (гепатоциты) трансформируют свою структуру.

Она начинает накапливать жировую, соединительную ткань. Состав печени видоизменяется, отмирающие клетки, другие факторы могут образовывать различные кисты, гемангиомы. Появляются признаки гепатомегалии (увеличение печени в объёме).

Диффузные изменения могут быть ярко выраженными и слабыми. Незначительные возникают во время простудных, инфекционных заболеваний. Признаки и симптомы:

  1. Неприятные тянущие боли в области печени после еды.
  2. Выпирание её из-под ребра, увеличение в размерах.
  3. Горький прикус во рту.
  4. Кожные высыпания на теле, пожелтение.
  5. Общая слабость, раздражительность.

Эти признаки являются поводом обратиться к врачу. Изменение структуры органа может вызвать тяжёлые заболевания:

Причины диффузных изменений:

  • Вредные привычки. Алкоголь, никотин.
  • Несбалансированное питание. Жареная, копчёная, солёная пища.
  • Диабет второго типа. Гормональный сбой.
  • Постоянное употребление медикаментов.

Наша печень способна очистить организм от вредных веществ, при поступлении их в допустимой норме. Когда отравляющие компоненты поступают постоянно, например алкоголь, или попадают в ударной дозе (отравление грибами), она не в состоянии справиться.

Тогда поджелудочная железа и печень работают в «аварийном режиме», вызывая диффузные трансформации этих органов.

Очаговые

Существует несколько таких поражений печени:

  1. Кисты – различного вида.
  2. Опухоли (доброкачественные, раковые).
  3. Механические повреждения.

Во время УЗИ определяется изменение органа. Что это такое, если эхогенность увеличена. Повышенная – это патология, которая характерна дистрофией. В печени нарушено кровообращение, она недополучает питательных веществ, разрастаются жировые ткани, идёт её увеличение в объёме.

Причин возникновения такого состояния много. Это может быть:

  1. Алкогольное поражение.
  2. Диабетические отложения.
  3. Приём некоторых медицинских препаратов.

Эта патология требует медикаментозное лечение, соблюдение диеты, изменение образа жизни.

Существует три вида поражений:

  • Стеатоз — когда увеличение идёт за счёт отложения жира.
  • Фиброз – образование рубцов, срыв функции органа.
  • Цирроз – разрушение печени.

Если вовремя не начать лечение, то быстро наступит третья стадия.

Селезёнка

Является ещё одним кроветворным органом. Её строма состоит из мышечной (ретикулярной) ткани, которая образует небольшие петли. Они заполнены кровяными клетками и макрофагами.

Эту часть селезёнки называют красной пульпой, она занимает почти весь орган, если белая – это лейкоциты, которые продуцируют антитела - это паренхима селезёнки.

Щитовидная железа


Вырабатывает гормоны для поддержания работы всех органов, снабжена большим количеством кровеносных сосудов. Это надо для того, чтоб гормоны быстро попадали в кровь. Она состоит из двух долей, паренхима щитовидной железы содержит тироциты. Они вырабатывают гормон, без которого происходят серьёзные нарушения в работе организма.

Диффузные модификации паренхимы щитовидной железы выявляются при ультразвуковом обследовании. Меняется её эхогенность, отражение волн от органа тоже трансформируется. Что происходит в долях устанавливается с помощью дополнительных анализов.

Причины диффузных видоизменений:

  1. Недостаток йода.
  2. Неправильная выработка гормона (увеличение, уменьшение).
  3. Экологическое влияние (повышенный радиационный фон).
  4. Воспалительные процессы.

Видоизменения структуры железы приводят к различным зобам (эндемическому, смешанному, диффузному). Как это проявляется? Какие признаки возникают? Симптомы заболеваний щитовидной железы:

  • Изменение структуры, увеличение объёма, появление очагов.
  • Ухудшение общего состояния здоровья (слабость, сонливость, раздражительность).
  • Сухость кожных покровов и волос.
  • Рассеянное внимание, невозможность сосредоточиться.

Легкие


Их паренхима образована большим количеством альвеол, сосудистой сетью. Ячейки наполнены воздухом, принимают участие в газообмене. К заболеваниям паренхимы относятся:

  1. Пневмония.
  2. Отёк лёгкого.
  3. Непроходимость дыхательных путей.
  4. Новообразования.

Воспалительные процессы, курение, вредные условия работы приводят к диффузным изменениям в органе.

Головной мозг


Его паренхима отделена от сосудистой части специальным барьером ГЭБ. Он обеспечивает обмен между мозгом и кровью. При травмах, опухолях, воспалениях происходит срыв, что приводит к тяжёлым последствиям.

Нарушение паренхимы, которая состоит из нейронов (нервных клеток) может привести к потере зрения, слуха, психическим расстройствам, сильным головным болям.
Мозг – орган, который до конца не изучен. Внутренняя его часть считается самой непредсказуемой.

Ткань — это устойчивый комплекс клеток, имеющих общее происхождение и сходное строение и выполняющих одинаковые функции.

Виды растительных тканей: основные, образовательные, механические, проводящие, покровные, выделительные.

Простые ткани — ткани, состоящие из одного вида клеток и выполняющие только основные функции (пример: ткани листа, молодого корня).

Сложные ткани — ткани, состоящие из различных по строению клеток, выполняющих, наряду с основными, некоторые дополнительные.функции (пример: клетки ксилемы выполняют проводящую и опорную функции).

Основная ткань (паренхима)

Основная ткань (паренхима) — это ткань растений, обеспечивающая многообразные функции (см. ниже) и образованная крупными живыми клетками, среди которых располагаются различные специализированные ткани.

■ Продольные и поперечные размеры клеток паренхимы отличаются не более чем в два раза.

Основные функции паренхимы: фотосинтезирующая (ассимилирующая), запасающая, воздухоносная и др.

❖ Виды основной ткани: хлоренхима, запасающая паренхима, аэренхима, водоносная паренхима.

Хлоренхима (хлорофиллоносная, или ассимиляционная паренхима) — ткань растений, в клетках которой в большом количестве содержатся хлоропласты. Состоит из тонкостенных клеток; выполняет функцию фотосинтеза и образуется в зеленых листьях и приповерхностных слоях стеблей растений.

Запасающая паренхима — ткань, в клетках которой откладываются в твердом или растворенном виде запасные питательные вещества (крахмал, сахара, белки), впоследствии использующиеся растением в процессе его жизнедеятельности.

Аэренхима (или воздухоносная паренхима) — воздухоносная ткань растений, образованная клетками разной формы и имеющая хорошо развитые межклетники, по которым циркулируют газы; способствует снабжению растения кислородом или углекислым газом.

■ Аэренхима развивается в разных органах болотных и водных высших растений (кувшинок и др.) и обеспечивает у них нормальный газообмен в условиях пониженной аэрации.

Водоносная паренхима — особая ткань растений, образованная крупными клетками паренхимы, имеющими тонкие стенки и лишенными хлоропластов, в вакуолях которых содержатся слизистые вещества, удерживающие воду; способствует снабжению клеток растения водой.

■ Водоносная паренхима характерна для высших растений засушливых районов (кактусов, агав, алоэ и др.) и солончаков и обеспечивает у них нормальное водоснабжение в условиях длительного отсутствия влаги.

Образовательные ткани (меристемы)

Образовательная ткань , или меристема , состоит из активно делящихся клеток с интенсивным обменом веществ и обеспечивает рост растения в течение всей его жизни за счет постоянного деления и образования новых клеток.

Особенности клеток образовательной ткани: клетки не дифференцированы, многогранны, плотно прилегают друг к другу, имеют тонкие стенки, крупное, расположенное в центре ядро, густую цитоплазму и небольшие вакуоли; могут делиться в разных направлениях. Одна часть клеток меристем постепенно дифференцируется, превращаясь в клетки различных постоянных тканей растения и формируя его тело, другая их часть задерживается на эмбриональной стадии развития в течение всей жизни растения.

❖ Виды меристем:
■ верхушечные (находятся на кончиках корней и верхушках стеблей);
■ вставочные (находятся у оснований цветоносных побегов и междоузлий однодольных растений);
■ боковые — камбий и др. (находятся внутри стеблей и корней);
■ раневые (формируются в любом органе растения, где возникло повреждение).
Камбий — боковая образовательная ткань, за счет деления клеток которой происходит вторичное утолщение (рост в толщину) стеблей и корней голосеменных и двудольных растений.

Механические ткани

Механические ткани — ткани, придающие прочность растению и образованные клетками, имеющими сильно утолщенные и одре-весневевшие оболочки и тесно примыкающими друг к другу.

■ Механические ткани образуют каркас растения, который заполняется мягкими и тонкостенными клетками остальных тканей. Виды механической ткани: колленхима и склеренхима.

❖ Колленхима образована живыми паренхимными клетками с неравномерно утолщенными, легко растягивающимися оболочками, не препятствующими росту клеток, что способствует укреплению молодых растущих органов растения.

■ Колленхима располагается под эпидермисом молодого стебля и черешков листьев и окаймляет жилки в листьях двудольных.

Склеренхима образована вытянутыми (прозенхимными) толстостенными клетками с отмершим на ранних стадиях содержимым и равномерно утолщенными, одревесневшими, прочными оболочками.

■ Склеренхима образует каркас наземных растений и их вегетативных органов. Типы склеренхимных клеток: волокна и склереиды.

Волокна — это длинные тонкие клетки, обычно собранные в тяжи или пучки (примеры: лубяные и древесинные волокна).

Склереиды представляют собой округлые мертвые клетки с очень толстыми одревесневшими оболочками.

■ Из склереид образуются семенная кожура, скорлупа орехов, косточки (вишни, сливы, персика и др.) и т.п.

Проводящие ткани

Проводящие ткани — это ткани, обеспечивающие передвижение воды и питательных веществ по растению.

Виды проводящих тканей:
ксилема обеспечивает восходящий ток;
флоэма обеспечивает нисходящий ток;

Ксилема — сложная проводящая ткань растений, выполняющая проводящую (обеспечивает транспорт воды и минеральных веществ от корней к листьям) и механическую функции. В состав ксилемы входят трахеиды или сосуды , паренхимные клетки и клетки механической ткани.

Трахеиды — отдельные вытянутые мертвые (одревесневшие) клетки с утолщенными оболочками и скошенными концами, имеющими поры, через которые вода и растворенные в ней вещества проникают из одной трахеиды в другую. Имеются у голосеменных, папоротников, хвощей и плаунов.

Сосуды — сплошные длинные полые трубки, образованные из мертвых клеток, между которыми разрушены поперечные перегородки. Имеются только у покрытосеменных растений. По сосудам вода с растворенными в ней минеральными солями перемещается от корней к другим органам растения.

Флоэма — сложная (комплексная) проводящая ткань высших растений, состоящая из собственно проводящих элементов ситовидных клеток и клеток-спутниц , а также клеток механической и основной ткани.

Основная функция флоэмы — транспорт органических продуктов фотосинтеза от листьев к другим органам (нисходящий ток).

Ситовидные трубки — ряд расположенных друг за другом в флоэме и проходящих по всей длине растения вытянутых живых клеток (члеников), в которых отсутствуют ядра, цитоплазма прилегает к стенкам клеток в виде тонкого слоя, а поперечные перегородки имеют сквозные округлые отверстия (наподобие сита), через которые растворы органических веществ проникают из одной клетки в другую.

Клетки-спутницы — типичные по строению растительные клетки, залегающие рядом с ситовидными трубками и способствующие передвижению по ним органических веществ. У голосеменных клетки-спутницы отсутствуют.

■ Ксилема и флоэма тесно взаимодействуют друг с другом и обычно образуют в органах растения особые тканевые комплексы — проводящие пучки .

Древесина — вторичная ксилема; ежегодно нарастающий и составляющий основную часть ствола дерева комплекс проводящей (сосуды), механической (древесные волокна) и основной тканей, расположенных внутрь от камбия.

■ Древесина является опорой стебля дерева и служит для проведения воды и минеральных солей от его корней к листьям.

Покровные ткани

Покровные ткани — ткани, покрывающие тело растения снаружи и защищающие его от неблагоприятных внешних воздействий.

Виды покровной ткани: эпидерма, пробка, корка, риюдерма .

Кора — совокупность тканей многолетних растений, расположенных в их стеблях и корнях снаружи от камбия.

■ Кора состоит из эпидермы, пробки, лубяных волокон (механической ткани коры) и ситовидных трубок (которые выполняют проводящую функцию).

Эпидерма — покровная ткань, кожица, состоящая из одного слоя плотно расположенных клеток, имеющих утолщенные наружные стенки. Снаружи клетки эпидермиса покрыты кутикулой и — нередко — многочисленными волосками и восковым налетом, защищающими растение от излишних потерь воды.

■ Эпидермой покрыты однолетние стебли и листья растений.

Кутикула — особая пленка, состоящая из жироподобных веществ, вырабатываемых клетками эпидермиса.

Устьице — своеобразный клапан в эпидермисе, представляющий собой щелевидное отверстие, ограниченное с обеих сторон двумя клетками бобовидной формы (их называют замыкающими), которые могут изменять свою форму и тем самым регулировать ширину устьичного отверстия.

Функции устьиц: осуществление газообмена между растительным организмом и внешней средой и испарение воды растением (транспирация ).

Пробка (перидерма ) — вторичная покровная ткань у стеблей и корней многолетних двудольных и голосеменных растений, со временем заменяющая эпидерму и состоящая из нескольких слоев отмерших клеток.

■ Пробка образуется из боковой образовательной ткани — пробкового камбия . Оболочки клеток этой ткани содержат особое вещество суберин, не пропускающее воду и воздух, вследствие чего клетки постепенно отмирают и заполняются воздухом, предохраняя растения от неблагоприятных воздействий среды.

■ Газообмен и испарение воды через пробку обеспечивается за счет образования в ней чечевичек — разрывов, заполненных рыхло расположенными клетками и имеющих вид небольших бугорков.

Корка — наружный слой коры, формирующийся в течение многих лет защитный слой тканей на стеблях и корнях древесных растений, образующийся в результате ежегодного наращивания отдельных слоев пробки.

Луб — вторичная флоэма древесных растений, внутренний слой их коры, представляющий собой комплекс проводящей (ситовидные трубки), механической (лубяные волокна) и основной (лубяная паренхима) тканей, расположенных кнаружи от камбия.

Функция луба — проведение растворов органических веществ (углеводов) от листьев к корням.

Лубяные волокна — механическая ткань стебля растения, представляющая собой клетки с разрушенным содержимым и одревесневевшими клеточными стенками.

Ризодерма (эпиблема ) — первичная покровная ткань корня, формирующаяся вблизи конуса нарастания и несущая корневые волоски.

Функция ризодермы — активное поглощение веществ из почвенного раствора.

Выделительные ткани

Выделительные , или секреторные , ткани — ткани, образованные тонкостенными живыми клетками, выделяющими различные (в зависимости от выполняемой функции) секреты, и выполняющие выделительные (выделение гормонов — регуляторов роста растения, пигментов, дубильных веществ, ингибиторов или стимуляторов роста соседних растений и т.д.), защитные (фитонциды, смолы) и некоторые иные (нектарники и др.) функции.

Типы выделительных тканей: млечники, выделительные клетки, нектарники, железистые клетки, смоляные ходы и др.

Млечники — ткани, состоящие из живых многоядерных клеток, расположенных во флоэме и содержащих млечный сок (латекс); защищают от повреждений и поедания животными (примеры: мак, молочай, одуванчик).

Выделительные клетки — мертвые клетки, содержащие ядовитые вещества; защищают от поедания животными (примеры: чай, лавр, лекарственные растения).

Смоляные ходы — это группы мертвых клеток, заполненных смолой (живицей); сосредоточены во внутренней части стеблей хвойных растений; защищают растения от насекомых-вредите-лей.

Нектарники состоят из клеток, выделяющих нектар — раствор углеводов, привлекающий насекомых. Имеются в цветках растений, опыляемых насекомыми.

Железистые клетки — живые клетки, заполненные жидким секретом, состоящим из исключенным из газообмена веществ, и выделяющие газообразные, жидкие, твердые вещества во внешнюю среду. Находятся на поверхности некоторых листьев, стеблей (герань) и защищают растения от чрезмерного испарения и поедания животными.