Логические уравнения и методы их решения. Решение логических уравнений по математике

Пусть – логическая функция от n переменных. Логическое уравнение имеет вид:

Константа С имеет значение 1 или 0.

Логическое уравнение может иметь от 0 до различных решений. Если С равно 1, то решениями являются все те наборы переменных из таблицы истинности, на которых функция F принимает значение истина (1). Оставшиеся наборы являются решениями уравнения при C, равном нулю. Можно всегда рассматривать только уравнения вида:

Действительно, пусть задано уравнение:

В этом случае можно перейти к эквивалентному уравнению:

Рассмотрим систему из k логических уравнений:

Решением системы является набор переменных, на котором выполняются все уравнения системы. В терминах логических функций для получения решения системы логических уравнений следует найти набор, на котором истинна логическая функция Ф, представляющая конъюнкцию исходных функций :

Если число переменных невелико, например, менее 5, то нетрудно построить таблицу истинности для функции , что позволяет сказать, сколько решений имеет система и каковы наборы, дающие решения.

В некоторых задачах ЕГЭ по нахождению решений системы логических уравнений число переменных доходит до значения 10. Тогда построить таблицу истинности становится практически неразрешимой задачей. Для решения задачи требуется другой подход. Для произвольной системы уравнений не существует общего способа, отличного от перебора, позволяющего решать такие задачи.

В предлагаемых на экзамене задачах решение обычно основано на учете специфики системы уравнений. Повторяю, кроме перебора всех вариантов набора переменных, общего способа решения задачи нет. Решение нужно строить исходя из специфики системы. Часто полезно провести предварительное упрощение системы уравнений, используя известные законы логики. Другой полезный прием решения этой задачи состоит в следующем. Нам интересны не все наборы, а только те, на которых функция имеет значение 1. Вместо построения полной таблицы истинности будем строить ее аналог - бинарное дерево решений. Каждая ветвь этого дерева соответствует одному решению и задает набор, на котором функция имеет значение 1. Число ветвей в дереве решений совпадает с числом решений системы уравнений.

Что такое бинарное дерево решений и как оно строится, поясню на примерах нескольких задач.

Задача 18

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют системе из двух уравнений?

Ответ: Система имеет 36 различных решений.

Решение: Система уравнений включает два уравнения. Найдем число решений для первого уравнения, зависящего от 5 переменных – . Первое уравнение можно в свою очередь рассматривать как систему из 5 уравнений. Как было показано, система уравнений фактически представляет конъюнкцию логических функций. Справедливо и обратное утверждение, - конъюнкцию условий можно рассматривать как систему уравнений.

Построим дерево решений для импликации () - первого члена конъюнкции, который можно рассматривать как первое уравнение. Вот как выглядит графическое изображение этого дерева


Дерево состоит из двух уровней по числу переменных уравнения. Первый уровень описывает первую переменную . Две ветви этого уровня отражают возможные значения этой переменной – 1 и 0. На втором уровне ветви дерева отражают только те возможные значения переменной , для которых уравнение принимает значение истина. Поскольку уравнение задает импликацию, то ветвь, на которой имеет значение 1, требует, чтобы на этой ветви имело значение 1. Ветвь, на которой имеет значение 0, порождает две ветви со значениями , равными 0 и 1. Построенное дерево задает три решения, на которых импликация принимает значение 1. На каждой ветви выписан соответствующий набор значений переменных, дающий решение уравнения.

Вот эти наборы: {(1, 1), (0, 1), (0, 0)}

Продолжим построение дерева решений, добавляя следующее уравнение, следующую импликацию . Специфика нашей системы уравнений в том, что каждое новое уравнение системы использует одну переменную из предыдущего уравнения, добавляя одну новую переменную. Поскольку переменная уже имеет значения на дереве, то на всех ветвях, где переменная имеет значение 1, переменная также будет иметь значение 1. Для таких ветвей построение дерева продолжается на следующий уровень, но новые ветви не появляются. Единственная ветвь, где переменная имеет значение 0, даст разветвление на две ветви, где переменная получит значения 0 и 1. Таким образом, каждое добавление нового уравнения, учитывая его специфику, добавляет одно решение. Исходное первое уравнение:

имеет 6 решений. Вот как выглядит полное дерево решений для этого уравнения:


Второе уравнение нашей системы аналогично первому:

Разница лишь в том, что в уравнении используются переменные Y. Это уравнение также имеет 6 решений. Поскольку каждое решение для переменных может быть скомбинировано с каждым решением для переменных , то общее число решений равно 36.

Заметьте, построенное дерево решений дает не только число решений (по числу ветвей), но и сами решения, выписанные на каждой ветви дерева.

Задача 19

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют всем перечисленным ниже условиям?

Эта задача является модификацией предыдущей задачи. Разница в том, что добавляется еще одно уравнение, связывающее переменные X и Y.

Из уравнения следует, что когда имеет значение 1(одно такое решение существует), то и имеет значение 1. Таким образом, существует один набор, на котором и имеют значения 1. При , равном 0, может иметь любое значение, как 0, так и 1. Поэтому каждому набору с , равном 0, а таких наборов 5, соответствует все 6 наборов с переменными Y. Следовательно, общее число решений равно 31.

Задача 20

Решение: Вспоминания основные эквивалентности, запишем наше уравнение в виде:

Циклическая цепочка импликаций означает тождественность переменных, так что наше уравнение эквивалентно уравнению:

Это уравнение имеет два решения, когда все равны либо 1, либо 0.

Задача 21

Сколько решений имеет уравнение:

Решение: Так же, как и в задаче 20, от циклических импликаций перейдем к тождествам, переписав уравнение в виде:

Построим дерево решений для этого уравнения:


Задача 22

Сколько решений имеет следующая система уравнений?

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 18»

городского округа город Салават Республики Башкортостан

Системы логических уравнений

в задачах ЕГЭ по информатике

Раздел «Основы алгебры логики» в заданиях ЕГЭ считается одним из самых сложных и плохо решаемых. Средний процент выполнения заданий по данной теме самый низкий и составляет 43,2.

Раздел курса

Средний процент выполнения по группам заданий

Кодирование информации и измерение ее количества

Информационное моделирование

Системы счисления

Основы алгебры логики

Алгоритмизация и программирование

Основы информационно- коммуникационных технологий

Исходя из спецификации КИМа 2018 года этот блок включает четыре задания разного уровня сложности.

задания

Проверяемые

элементы содержания

Уровень сложности задания

Умение строить таблицы истинности и логические схемы

Умение осуществлять поиск информации в сети Интернет

Знание основных понятий и законов

математической логики

Умение строить и преобразовывать логические выражения

Задание 23 является высоким по уровню сложности, поэтому имеет самый низкий процент выполнения. Среди подготовленных выпускников (81-100 баллов) 49,8% выполнивших, средне подготовленные (61-80 баллов) справляются на 13,7%, оставшаяся группа учеников данное задание не выполняет.

Успешность решения системы логических уравнений зависит от знания законов логики и от четкого применения методов решения системы.

Рассмотрим решение системы логических уравнений методом отображения.

(23.154 Поляков К.Ю.) Сколько различных решений имеет система уравнений?

((x 1 y 1 ) (x 2 y 2 )) (x 1 x 2 ) (y 1 y 2 ) =1

((x 2 y 2 ) (x 3 y 3 )) (x 2 x 3 ) (y 2 y 3 ) =1

((x 7 y 7 ) (x 8 y 8 )) (x 7 x 8 ) (y 7 y 8 ) =1

где x 1 , x 2 ,…, x 8, у 1 2 ,…,у 8 - логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение . Все уравнения, включенные в систему, однотипны, и в каждое уравнение включено четыре переменных. Зная x1 и y1, можем найти все возможные значения x2 и y2, удовлетворяющие первому уравнению. Рассуждая аналогичным образом, из известных x2 и y2можем найти x3, y3, удовлетворяющее второму уравнению. То есть, зная пару (x1 , y1) и определив значение пары (x2 , y2) , мы найдем пару (x3 , y3 ), которая, в свою очередь, приведет к паре (x4 , y4 ) и так далее.

Найдем все решения первого уравнения. Это можно сделать двумя способами: построить таблицу истинности, через рассуждения и применение законов логики.

Таблица истинности:

x 1 y 1

x 2 y 2

(x 1 y 1 ) (x 2 y 2 )

(x 1 x 2 )

(y 1 y 2 )

(x 1 x 2 ) (y 1 y 2 )

Построение таблицы истинности трудоемко и неэффективно по времени, поэтому применяем второй способ - логические рассуждения. Произведение равно 1 тогда и только тогда, когда каждый множитель равен 1.

(x 1 y 1 ) (x 2 y 2 ))=1

(x 1 x 2 ) =1

(y 1 y 2 ) =1

Рассмотрим первое уравнение. Следование равно 1, когда 0 0, 0 1, 1 1, значит (x1 y1)=0 при (01), (10), то пара (x 2 y 2 ) может быть любой (00), (01), (10), (11), а при (x1 y1)=1, то есть (00) и (11) пара (x2 y2)=1 принимает такие же значения (00) и (11). Исключим из этого решения те пары, для которых ложны второе и третье уравнения, то есть x1=1, x2=0, y1=1, y2=0.

(x 1 , y 1 )

(x 2 , y 2 )

Общее количество пар 1+1+1+22=25

2) (23.160 Поляков К.Ю.) Сколько различных решений имеет система логических уравнений

(x 1 (x 2 y 2 )) (y 1 y 2 ) = 1

(x 2 (x 3 y 3 )) (y 2 y 3 ) = 1

...

( x 6 ( x 7 y 7 )) ( y 6 y 7 ) = 1

x 7 y 7 = 1

Решение. 1) Уравнения однотипные, поэтому методом рассуждения найдем всевозможные пары (x1,y1), (x2,y2) первого уравнения.

(x 1 (x 2 y 2 ))=1

(y 1 y 2 ) = 1

Решением второго уравнения являются пары (00), (01), (11).

Найдем решения первого уравнения. Если x1=0, то x2 , y2 - любые, если x1=1, то x2 , y2 принимает значение (11).

Составим связи между парами (x1 , y1) и (x2 , y2).

(x 1 , y 1 )

(x 2 , y 2 )

Составим таблицу для вычисления количества пар на каждом этапе.

0

Учитывая решения последнего уравнения x 7 y 7 = 1, исключим пару (10). Находим общее число решений 1+7+0+34=42

3)(23.180) Сколько различных решений имеет система логических уравнений

(x 1 x 2 ) (x 3 x 4 ) = 1

(x 3 x 4 ) (x 5 x 6 ) = 1

(x 5 x 6 ) (x 7 x 8 ) = 1

(x 7 x 8 ) (x 9 x 10 ) = 1

x 1 x 3 x 5 x 7 x 9 = 1

Решение. 1) Уравнения однотипные, поэтому методом рассуждения найдем всевозможные пары (x1,x2), (x3,x4) первого уравнения.

(x 1 x 2 ) (x 3 x 4 ) = 1

Исключим из решения пары, которые в следовании дают 0 (1 0), это пары (01, 00, 11) и (10).

Составим связи между парами (x1,x2), (x3,x4)

Методы решения систем логических уравнений

Решить систему логических уравнений можно, например, с помощью таблицы истинности (если количество переменных не слишком велико) или с помощью дерева решений, предварительно упростив каждое уравнение.

1. Метод замены переменных.

Ввод новых переменных позволяет упростить систему уравнений, сократив количество неизвестных. Новые переменные должны быть независимыми друг от друга . После решения упрощенной системы надо снова вернуться к первоначальным переменным.

Рассмотрим применение этого метода на конкретном примере.

Пример.

((X1 ≡ X2) ∧ (X3 ≡ X4)) ∨ (¬(X1 ≡ X2) ∧ ¬(X3 ≡ X4)) = 0

((X3 ≡ X4) ∧ (X5 ≡ X6)) ∨ (¬(X3 ≡ X4) ∧ ¬(X5 ≡ X6)) = 0

((X5 ≡ X6) ∧ (X7 ≡ X8)) ∨ (¬(X5 ≡ X6) ∧ ¬(X7 ≡ X8)) = 0

((X7 ≡ X8) ∧ (X9 ≡ X10)) ∨ (¬(X7 ≡ X8) ∧ ¬(X9 ≡ X10)) = 0

Решение:

Введем новые переменные: А=(X1 ≡ X2); В=(X3 ≡ X4); С=(X5 ≡ X6); D=(X7 ≡ X8); E=(X9 ≡ X10).

(Внимание! Каждая их переменных x1, x2, …, x10 должна входить только в одну из новых переменных А,В,С,D,Е, т.е. новые переменные независимы друг от друга).

Тогда система уравнений будет выглядеть так:

(А ∧ В) ∨ (¬А ∧ ¬В)=0

(В ∧ C) ∨ (¬B ∧ ¬C)=0

(С ∧ D) ∨ (¬C ∧ ¬D)=0

(D ∧ E) ∨ (¬D ∧ ¬E)=0

Построим дерево решений полученной системы:

Рассмотрим уравнение А=0, т.е. (X1 ≡ X2)=0. Оно имеет 2 корня:

X1 ≡ X2

Из этой же таблицы видно, что уравнение А=1 тоже имеет 2 корня. Расставим кол-во корней на дереве решений:

Чтобы найти количество решений одной ветви, надо перемножить количества решений на каждом ее уровне. Левая ветвь имеет 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2=32 решения; правая ветвь имеет тоже 32 решения. Т.е. вся система имеет 32+32=64 решения.

Ответ: 64.

2. Метод рассуждений.

Сложность решения систем логических уравнений состоит в громоздкости полного дерева решений. Метод рассуждений позволяет не строить все дерево полностью, но понять при этом, сколько оно будет иметь ветвей. Рассмотрим этот метод на конкретных примерах.

Пример 1. Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют всем перечисленным ниже условиям?

(x1→x2) /\ (x2→x3) /\ (x3→x4) /\ (x4→x5) = 1

(y1→y2) /\ (y2→y3) /\ (y3→y4) /\ (y4→y5) = 1

x1\/y1 =1

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Решение :

Первое и второе уравнения содержат независимые переменные, которые связаны третьим условием. Построим дерево решений первого и второго уравнений.

Чтобы представить дерево решений системы из первого и второго уравнений, надо каждую ветвь первого дерева продолжить деревом для переменных у . Построенное таким образом дерево будет содержать 36 ветвей. Некоторые из этих ветвей не удовлетворяют третьему уравнению системы. Отметим на первом дереве количество ветвей дерева «у» , которые удовлетворяют третьему уравнению:

Поясним: для выполнения третьего условия при х1=0 должно быть у1=1, т.е все ветви дерева «х» , где х1=0 можно продолжить только одной ветвью из дерева «у» . И только для одной ветви дерева «х» (правой) подходят все ветви дерева «у». Таким образом, полное дерево всей системы содержит 11 ветвей. Каждая ветвь представляет собой одно решение исходной системы уравнений. Значит, вся система имеет 11 решений.

Ответ: 11.

Пример 2. Сколько различных решений имеет система уравнений

(X1 ≡ X2) ∨ (X1 ∧ X10) ∨ (¬X1 ∧ ¬ X10)= 1

(X2 ≡ X3) ∨ (X2 ∧ X10) ∨ (¬X2 ∧ ¬ X10)= 1.

………………

(X9 ≡ X10) ∨ (X9 ∧ X10) ∨ (¬X9 ∧ ¬ X10)= 1

(X1 ≡ X10) = 0

где x1, x2, …, x10 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение : Упростим систему. Построим таблицу истинности части первого уравнения:

X1 ∧ X10

¬X1 ∧ ¬ X10

(X1 ∧ X10) ∨ (¬X1 ∧ ¬ X10)

Обратите внимание на последний столбец, он совпадает с результатом действия X1 ≡ X10.

X1 ≡ X10

После упрощения получим:

(X1 ≡ X2) ∨ (X1 ≡ X10)=1

(X2 ≡ X3) ∨ (X2 ≡ X10)=1

(X3 ≡ X4) ∨ (X3 ≡ X10)=1

……

(X9 ≡ X10) ∨ (X9 ≡ X10)=1

(X1 ≡ X10) = 0

Рассмотрим последнее уравнение: (X1 ≡ X10) = 0 , т.е. х1 не должно совпадать с х10. Чтобы первое уравнение было равно 1, должно выполняться равенство (X1 ≡ X2)=1, т.е. х1 должно совпадать с х2.

Построим дерево решений первого уравнения:

Рассмотрим второе уравнение: при х10=1 и при х2=0 скобка должна быть равна 1 (т.е. х2 совпадает с х3); при х10=0 и при х2=1 скобка (X2 ≡ X10)=0 , значит, скобка (X2 ≡ X3) должна быть равна 1 (т.е. х2 совпадает с х3):

Рассуждая таким образом, построим дерево решений для всех уравнений:

Таким образом, система уравнений имеет всего 2 решения.

Ответ: 2.

Пример 3.

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, которые удовлетворяют всем перечисленным ниже условиям?

(x1→x2) /\ (x2→x3) /\ (x3→x4) = 1

(¬x1 /\ y1 /\ z1) \/ (x1 /\ ¬y1 /\ z1) \/ (x1 /\ y1 /\ ¬z1) = 1

(¬x2 /\ y2 /\ z2) \/ (x2 /\ ¬y2 /\ z2) \/ (x2 /\ y2 /\ ¬z2) = 1

(¬x3 /\ y3 /\ z3) \/ (x3 /\ ¬y3 /\ z3) \/ (x3 /\ y3 /\ ¬z3) = 1

(¬x4 /\ y4 /\ z4) \/ (x4 /\ ¬y4 /\ z4) \/ (x4 /\ y4 /\ ¬z4) = 1

Решение:

Построим дерево решений 1-го уравнения:

Рассмотрим второе уравнение:

  • При х1=0 : вторая и третья скобки будут равны 0; чтобы первая скобка была равна 1, должны у1=1 , z1=1 (т.е. в этом случае - 1 решение)
  • При х1=1 : первая скобка будет равна 0; вторая или третья скобка должна быть равна 1; вторая скобка будет равна 1 при у1=0 и z1=1; третья скобка будет равна 1 при у1=1 и z1=0 (т.е. в этом случае - 2 решения).

Аналогично для остальных уравнений. Отметим полученное кол-во решений у каждого узла дерева:

Чтобы узнать кол-во решений для каждой ветви, перемножим полученные числа по отдельности для каждой ветви (слева напрво).

1 ветвь: 1 ⋅ 1 ⋅ 1 ⋅ 1 = 1 решение

2 ветвь: 1 ⋅ 1 ⋅ 1 ⋅ 2 =2 решения

3 ветвь: 1 ⋅ 1 ⋅ 2 ⋅ 2 =4 решения

4 ветвь: 1 ⋅ 2 ⋅ 2 ⋅ 2 =8 решения

5 ветвь: 2 ⋅ 2 ⋅ 2 ⋅ 2=16 решения

Сложим полученные числа: всего 31 решение.

Ответ: 31.

3. Закономерное увеличение количества корней

В некоторых системах количество корней очередного уравнения зависит от количества корней предыдущего уравнения.

Пример 1. Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, которые удовлетворяют всем перечисленным ниже условиям?

¬(x1 ≡ x2) ∧ ((x1 ∧ ¬x3) ∨ (¬x1 ∧ x3)) = 0

¬(x2 ≡ x3) ∧ ((x2 ∧ ¬x4) ∨ (¬x2 ∧ x4)) = 0

¬(x8 ≡ x9) ∧ ((x8 ∧ ¬x10) ∨ (¬x8 ∧ x10)) = 0

Упростим первое уравнение: (x1 ∧ ¬x3) ∨ (¬x1 ∧ x3)=x1 ⊕ x3=¬(x1 ≡ x3). Тогда система примет вид:

¬(x1 ≡ x2) ∧ ¬(x1 ≡ x3) = 0

¬(x2 ≡ x3) ∧ ¬(x2 ≡ x4)= 0

¬(x8 ≡ x9) ∧ ¬(x8 ≡ x10) = 0

И т.д.

Каждое следующее уравнение имеет на 2 корня больше, чем предыдущее.

4 уравнение имеет 12 корней;

5 уравнение имеет 14 корней

8 уравнение имеет 20 корней.

Ответ: 20 корней.

Иногда количество корней растет по закону чисел Фибоначчи.

Решение системы логических уравнений требует творческого подхода.


Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике существуют определенные задачи, которые посвящены логике высказываний. Чтобы решить данного рода уравнения необходимо обладать неким багажом знаний: знания законов логики высказываний, знания таблиц истинности логических функций 1 или 2 переменных, методы преобразования логических выражений. Кроме того, необходимо знать следующие свойства логических операций: конъюнкции, дизъюнкции, инверсии, импликации и эквивалентности.

Любую логическую функцию от \ переменных - \можно задать таблицей истинности.

Решим несколько логически уравнений:

\[\rightharpoondown X1\vee X2=1 \]

\[\rightharpoondown X2\vee X3=1\]

\[\rightharpoondown X3\vee X4=1 \]

\[\rightharpoondown X9\vee X10=1\]

Начнем решение с \[Х1\] и определим какие значения данная переменная может принимать: 0 и 1. Далее рассмотрим каждое их вышеприведенных значений и посмотрим, какое может быть при этом \[Х2.\]

Как видно из таблицы наше логическое уравнение имеет 11 решений.

Где можно решить логическое уравнение онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Решение систем логических уравнений табличным способами преобразованием логических выражений.

Данная методика основана на использование таблиц истинности, рассчитана на учащихся, которые владеют методами преобразования логических выражений. Если учащиеся плохо владеют этими методами, можно использовать и без преобразований. (Мы будем использовать преобразования). Для овладения этим способом решения, необходимы в обязательном порядке знание свойств основных логических операций: конъюнкции, дизъюнкции, инверсии, импликации и эквивалентности.

Алгоритм решения систем уравнений по этому методу:

    Преобразовать логическое уравнение, упростить его.

    Определить последовательность решения уравнений в системе, так как в большинстве случаев идет последовательное решение уравнений сверху вниз (как они расположены в системе), но есть варианты, когда удобнее, проще начать решать снизу вверх.

    Построить таблицу переменных, где задать начальные значения первой переменной (или последней).

    Последовательно прописать возможные варианты следующей переменной при каждом значении первой.

    После решения предыдущего уравнения, переходя на следующее, обязательно обращать внимание: какие переменные используются в предыдущем и последующем уравнении, так как полученные при решении в предыдущих уравнениях значения переменных переходят как варианты для следующих уравнений.

    Обращать внимание на получаемые количества решения при переходе к следующей переменной, т.к. может быть выявлена закономерность в увеличении решений.

Пример1.

¬ X 1 ˅ X 2=1

¬ X 2 ˅ X 3=1

¬ X 3 ˅ X 4=1

¬ X 9 ˅ X 10=1

Начнем с Х1 и посмотрим какие значения эта переменная может принимать: 0 и 1.

Затем рассмотрим каждое из этих значений и посмотрим, какое может быть при этом Х2.

Ответ: 11 решений

Пример 2.

( X X 2)˅(¬ X 1˄¬ X 2) ˅( X 1↔ X 3)=1

( X X 3)˅(¬ X 2˄¬ X 3) ˅( X 2↔ X 4)=1

(X8˄ X9)˅(¬X8˄¬X9) ˅(X8↔X10)=0

Преобразуем по формуле (A ˄ B )˅ (¬ A ˄ ¬ B )= A B

Получаем:

( X 1↔ X 2) ˅ ( X 1↔ X 3) =1

( X 2↔ X 3) ˅ ( X 2↔ X 4) =1

( X 8↔ X 9) ˅ ( X 8↔ X 10) =0

Для Х1 =0 - 8 решений

Возьмем Х1=1 и посмотрим какие значение может принимать Х2. Теперь для каждого Х2 рассмотрим какие значения может принимать Х3 и т.д.

Для Х1=1 – 8 решений

Итого 8+8=16 решений

Ответ. 16 решений

Пример 3 .

¬ ( X 1↔ X 2) ˄ ( X 1 ˅ X 3) ˄ (¬ X 1 ˅ ¬ X 3 )=0

¬ ( X 2↔ X 3) ˄ ( X 2 ˅ X 4) ˄ (¬ X 2 ˅ ¬ X 4)=0

.

¬ ( X 8↔ X 9) ˄ ( X 8 ˅ X 10) ˄ (¬ X 8 ˅ ¬ X 10)=0

После преобразований (A ˅ B ) ˄(¬ A ˅¬ B )= ¬( A B )

получаем:

¬ ( X 1↔ X 2) ˄ ¬ ( X 1↔ X 3)=0

¬ ( X 2↔ X 3) ˄ ¬ ( X 2↔ X 4)=0

..

¬ ( X 8↔ X 9) ˄ ¬ ( X 8↔ X 10)=0

Возьмем Х1=0 и посмотрим какие значение может принимать Х2. Теперь для каждого Х2 рассмотрим какие значения может принимать Х3 и т.д

Получилось 10 решений для Х1=0

То же самое проделаем для Х1=1. Получим тоже 10 решений

Итого:10+10=20

Ответ: 20 решений.

Пример 4.

(Х1 ˄ Х2) ˅ (¬Х1 ˄ ¬Х2 ) ˅ (Х2 ˄ Х3) ˅ (¬Х2 ˄¬ Х3) =1

(Х2 ˄ Х3) ˅ (¬Х2 ˄ ¬Х3) ˅ (Х3˄ Х4) ˅ (¬Х3 ˄¬ Х4)=1

.

(Х8 ˄ Х9) ˅ (¬Х8˄ ¬Х9) ˅ (Х9 ˄ Х10) ˅ (¬Х9 ˄¬ Х10)=0

Преобразуем по формулам. (A ˄ B )˅ (¬ A ˄ ¬ B )= A B . Получим:

(Х1↔ Х2) ˅ (Х2↔ Х3)=1

(Х2↔ Х3) ˅ (Х3↔ Х4)=1

(Х3↔ Х4) ˅ (Х4↔ Х5)=1

(Х4↔ Х5) ˅ (Х5↔ Х6)=1

(Х5↔ Х6) ˅ (Х6↔ Х7)=1

(Х6↔ Х7) ˅ (Х7↔ Х8)=1

(Х7↔ Х8) ˅ (Х8↔ Х9)=1

(Х8↔ Х9) ˅ (Х9↔ Х10)=0

Начнем с конца, потому что в последнем уравнении переменные определятся однозначно.

Пусть Х10=0, тогда Х9=1, Х8=0, Х7=0, Х6=0, а следующие переменные могут принимать разные значения. Будем рассматривать каждое .

Итого 21 решение для Х10=0

Теперь рассмотрим для Х10=1. Получаем тоже 21 решение

Итого:21+21=42

Ответ: 42 решения

Пример 5.

( X 1 ˄ X 2) ˅ (¬ X 1 ˄ ¬ X 2) ˅ (¬ X 3 ˄ X 4) ˅ ( X 3 ˄ ¬ X 4)=1

( X 3 ˄ X 4) ˅ (¬ X 3 ˄ ¬ X 4) ˅ (¬ X 5 ˄ X 6) ˅ ( X 5 ˄ ¬ X 6)=1

( X 5 ˄ X 6) ˅ (¬ X 5 ˄ ¬ X 6) ˅ (¬ X 7 ˄ X 8) ˅ ( X 7 ˄ ¬ X 8)=1

( X 7 ˄ X 8) ˅ (¬ X 7 ˄ ¬ X 8) ˅ X 9 ˄ X 10) ˅ ( X 9˄ ¬ X 10) =1

Преобразуем по формулам: A ˄ B ) ˅ ( A ˄ ¬ B )= A ↔ ¬ B

( A ˄ B )˅ (¬ A ˄ ¬ B )= A B

( X 1↔ X 2) ˅ ( X 3 ↔ ¬ X 4)=1

( X 3↔ X 4) ˅ ( X 5 ↔ ¬ X 6)=1

( X 5↔ X 6) ˅ ( X 7 ↔ ¬ X 8)=1

( X 7↔ X 8) ˅ ( X 9 ↔ ¬ X 10)=1

Рассмотрим какие значения могут принимать Х1 и Х2: (0,0), (0,1), (1,0), (1,1).

Рассмотрим каждый вариант и посмотрим какие значения при этом могут принимать Х3, Х4

Начиная с Х7, Х8 будем сразу записывать количество решений, так как сразу видно, что когда значения одинаковые (1,1) и (0,0), то следующие переменные имеют 4 решения, а когда разные (0,1) и (1,0) – 2 решения.

Итого: 80+80+32=192

Ответ:192 решения

Пример 6.

(Х1↔ Х2) ˅ (Х2 ↔Х3)=1

(Х2↔ Х3) ˅ (Х3↔Х4)=1

(Х3↔ Х4) ˅ (Х4 ↔Х5)=1

.

(Х8↔ Х9) ˅ (Х9 ↔Х10)=1

Возьмем Х1=0 и посмотрим какие значение может принимать Х2. Теперь для каждого Х2 рассмотрим какие значения может принимать Х3 и т.д.

Видим некоторую закономерность: Количество следующих решений равно сумме двух предыдущих.

То же самое для Х1=1 получаем 89 решений

Итого: 89+89=178 решений

Ответ: 178 решений

Решим еще одним способом

(Х1↔ Х2) ˅ (Х2 ↔Х3)=1

(Х2↔ Х3) ˅ (Х3↔Х4)=1

(Х3↔ Х4) ˅ (Х4 ↔Х5)=1

.

(Х8↔ Х9) ˅ (Х9 ↔Х10)=1

Введем замену:

T 1 =(Х1↔ Х2)

T 2 =(Х2↔ Х3)

T 3 =(Х3↔ Х4)

T 4 =(Х4↔ Х5)

T 5 =(Х5↔ Х6)

T 6 =(Х6↔ Х7)

T 7 =(Х7↔ Х8)

T 8 =(Х8↔ Х9)

T 9 =(Х9↔ Х10)

Получаем:

T 1 ˅ T 2=1

T 2 ˅ T 3=1

T 3 ˅ T 4=1

T 4 ˅ T 5=1

T 5 ˅ T 6=1

T 6 ˅ T 7=1

T 7 ˅ T 8=1

T 8 ˅ T 9=1

T 9 ˅ T 10=1

Возьмем T 1=1 и используем свойства дизъюнкции:

НО Вспомним, что

T 1 =(Х1↔ Х2)

T 2 =(Х2↔ Х3) и т.д.

Воспользуемся свойством эквивалентности и убедимся, глядя на таблицу, что

Когда Т =1, то получается два решения. А когда =0 –одно решение.

Следовательно, можно подсчитать количество единиц и умножить их на 2+ количество нулей. Подсчет, так же используя закономерность .

Получается, что количество единиц = предыдущему общему количеству решений Т, а количество нулей равно предыдущему количеству единиц

Итак. Получим. Так как единица дает два решения, то 34*2=68 решений из единицы+21 решение из 0.

Итого 89 решений для Т=1. Аналогичным способом получаем 89 решений для Т=0

Итого 89+89=178

Ответ: 178 решений

Пример 7.

(X 1 ↔ X 2) ˅ (X 3↔ X 4) ˄ ¬(X 1 ↔ X 2) ˅ ¬(X 3↔ X 4)=1

(X 3 ↔ X 4) ˅ (X 5↔ X 6) ˄ ¬(X 3 ↔ X 4) ˅ ¬(X 5↔ X 6)=1

(X 5 ↔ X 6) ˅ (X 7↔ X 8) ˄ ¬(X 5 ↔ X 6) ˅ ¬(X 7↔ X 8)=1

(X 7 ↔ X 8) ˅ (X 9↔ X 10) ˄ ¬(X 7 ↔ X 8) ˅ ¬(X 9↔ X 10)=1

Введем замену:

T 1=(X 1 ↔ X 2)

T 2=(X 3↔ X 4)

T 3=(X 5↔ X 6)

T 4=(X 7 ↔ X 8)

T 5=(X 9↔ X 10)

Получим:

(Т1 ˅ Т2) ˄ ¬(Т1 ˅¬ Т2)=1

(Т2 ˅ Т3) ˄ ¬(Т2˅¬ Т3)=1

(Т3 ˅ Т4) ˄ ¬(Т3 ˅¬ Т4)=1

(Т4 ˅ Т5) ˄ ¬(Т4˅¬ Т5)=1

Рассмотрим какие могут быть Т:

Т1

Т2

Т3

Т4

Т5

Итого

0

1

0

1

0

32

1

0

1

0

1

32

Т K ≠Т К+1 И Т K К+2

Получаем: 2 5 =32 для Т

Итого: 32+32=64

Ответ: 64 решения.