Круговорот о2 в природе. Свойства и применение кислорода

Вятский Государственный Гуманитарный Университет

Кафедра химии

Круговорот кислорода в природе

Работу выполнила студентка

Казаковцева Наталья Юрьевна

1.Понятие круговорота

Круговорот кислорода в природе

1 Общие сведения о кислороде-элементе

2 Круговорот кислорода

Список используемой литературы

1. Понятие круговорота

Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние. Круговорот элементов имел место в течение всей истории Земли, насчитывающей 4,5 млрд. лет.

Круговорот веществ - многократно повторяющийся процесс совместного, взаимосвязанного превращения и перемещения веществ в природе, имеющий более или менее цикличный характер. Общий круговорот веществ характерен для всех геосфер и складывается из отдельных процессов круговорота химических элементов, воды, газов и других веществ. Процессы круговорота не полностью обратимы из-за рассеивания веществ, изменения его состава, местной концентрации и деконцентрации.

Для обоснования и пояснения самого понятия круговорота полезно обратиться к четырем важнейшим положениям геохимии, которые имеют первостепенное прикладное значение и подтверждены бесспорными опытными данными:

а)повсеместное распространение химических элементов во всех геосферах;

б)непрерывная миграция (перемещение) элементов во времени и в пространстве;

в)многообразие видов и форм существования элементов в природе;

Более всего, на мой взгляд, стоит остановить свое внимание на процессе перемещения химических элементов.

Миграция химических элементов находит отражение в гигантских тектоно-магамтических процессах, преобразующих земную кору, и в тончайших химических реакциях, протекающих в живом веществе, в непрерывном поступательном развитии окружающего мира, характеризуя движение как форму существования материи. Миграция химических элементов определяется многочисленными внешними факторами, в частности, энергией солнечного излучения, внутренней энергией Земли, действием силы тяжести и внутренними факторами, зависящими от свойств самих элементов.

Круговороты могут происходить на ограниченном пространстве и на протяжении небольших отрезков времени, а может охватывать всю наружную часть планеты и огромные периоды. При этом малые круговороты входят в более крупные, которые в своей совокупности складываются в колоссальные биогеохимические круговороты. Они тесно связаны с окружающей средой.

Гигантские массы химических веществ переносятся водами Мирового океана. В первую очередь это относится к растворенным газам - диоксиду углерода, кислороду, азоту. Холодная вода высоких широт растворяет газы атмосферы. Поступая с океаническими течениями в тропический пояс, она их выделяет, так как растворимость газов при нагревании уменьшается. Поглощение и выделение газов происходит также при смене теплых и холодных сезонов года.

Огромное влияние на природные циклы некоторых элементов оказало появление жизни на планете. Это, в первую очередь, относится к круговороту главных элементов органического вещества - углерода, водорода и кислорода, а также таких жизненно важных элементов как азот, сера и фосфор. Живые организмы оказывают влияние и на круговорот многих металлических элементов. Несмотря на то, что суммарная масса живых организмов Земли меньше массы земной коры в миллионы раз, растения и животные играют важнейшую роль в перемещении химических элементов. Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии (сукцессия (от лат. succesio - преемственность) - последовательная смена экосистем, преемственно возникающих на определенном участке земной поверхности. Обычно сукцессия происходит под влиянием процессов внутреннего развития сообществ, их взаимодействия с окружающей средой. Длительность сукцессии составляет от десятков до миллионов лет). В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота.

Деятельность человека также оказывает влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие. При рассмотрении химических аспектов глобальных изменений в круговоротах химических элементов следует учитывать не только изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате обычных циклических и/или вызванных человеком воздействий, но и поступление в окружающую среду химических веществ, ранее не существовавших в природе.

Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот, сера.

Различают два основных круговорота: большой (геологический) и малый (биотический).

Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.

Малый круговорот, являясь частью большого, происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих растений, так и других организмов (как правило, животных), которые поедают их. Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.

Таким образом, круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки.

2. Круговорот кислорода в природе

1 Общие сведения о кислороде-элементе

История открытия. Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы):

HgO (t)→ 2Hg + O2

Однако, Пристли первоначально не понял, что открыл новое простое вещество. Он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (возможно, в 1770-м) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Петра Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа Антуан Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория (флогисто́н (от греч. phlogistos - горючий, воспламеняемый) - гипотетическая «огненная субстанция», якобы наполняющая все горючие вещества и высвобождающаяся из них при горении). Лавуазье провел опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теории флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Нахождение в природе. Кислород - самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов), приходится около 47,4 % массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % (по объему). Элемент кислород входит в состав более 1500 соединений земной коры.

Физические свойства. При нормальных условиях плотность газа кислорода 1,42897 г/л. Температура кипения жидкого кислорода (жидкость имеет голубой цвет) -182,9 °C. В твердом состоянии кислород существует по крайней мере в трех кристаллических модификациях. При 20°C растворимость газа О2: 3,1 мл на 100 мл воды, 22 мл на 100 мл этанола, 23,1 мл на 100 мл ацетона. Существуют органические фторсодержащие жидкости (например, перфторбутилтетрагидрофуран), в которых растворимость кислорода значительно более высокая.

Химические свойства элемента определяются его электронной конфигурацией: 2s22p4 . Высокая прочность химической связи между атомами в молекуле О2 приводит к тому, что при комнатной температуре газообразный кислород химически довольно малоактивен. В природе он медленно вступает в превращения при процессах гниения. Кроме того, кислород при комнатной температуре способен реагировать с гемоглобином крови (точнее с железом (II) гема (гем - производное порфирина, содержащего в центре молекулы атом двухвалентного железа), что обеспечивает перенос кислорода от органов дыхания к другим органам.

Со многими веществами кислород вступает во взаимодействие без нагревания, например, с щелочными и щёлочноземельными, вызывает образование ржавчины на поверхности стальных изделий. Без нагревания кислород реагирует с белым фосфором, с некоторыми альдегидами и другими органическими веществами.

При нагревании, даже небольшом, химическая активность кислорода резко возрастает. При поджигании он реагирует со взрывом с водородом, метаном, другими горючими газами, с большим числом простых и сложных веществ. Известно, что при нагревании в атмосфере кислорода или на воздухе многие простые и сложные вещества сгорают, причем образуются различные оксиды, пероксиды и супероксиды, такие как SO2, Fe2O3, Н2О2, ВаО2, КО2.

Если смесь кислорода и водорода хранить в стеклянном сосуде при комнатной температуре, то экзотермическая реакция образования воды

Н2 + О2 = 2Н2О + 571 кДж

протекает крайне медленно; по расчету, первые капельки воды должны появиться в сосуде примерно через миллион лет. Но при внесении в сосуд со смесью этих газов платины или палладия (играющих роль катализатора), а также при поджигании реакция протекает со взрывом.

С азотом N2 кислород реагирует или при высокой температуре (около 1500-2000 °C), или при пропускании через смесь азота и кислорода электрического разряда. При этих условиях обратимо образуется оксид азота (II):

2 + O2 = 2NO.

Возникший NO затем реагирует с кислородом с образованием бурого газа (диоксида азота):

NO + О2 = 2NO2

Из неметаллов кислород напрямую ни при каких условиях не взаимодействует с галогенами, из металлов - с серебром, золотом, платиной и металлами платиновой группы.

С самым активным неметаллом фтором кислород образует соединения в положительных степенях окисления. Так, в соединении O2F2 степень окисления кислорода +1, а в соединении O2F - +2. Эти соединения принадлежат не к оксидам, а к фторидам. Фториды кислорода можно синтезировать только косвенным путем, например, действуя фтором F2 на разбавленные водные растворы КОН.

Применение. Применение кислорода очень разнообразно. Основные количества получаемого из воздуха кислорода используются в металлургии. Кислородное (а не воздушное) дутьё в домнах позволяет существенно повышать скорость доменного процесса, экономить кокс и получать чугун лучшего качества. Кислородное дутьё применяют в кислородных конвертерах при переделе чугуна в сталь. Чистый кислород или воздух, обогащённый кислородом, используется при получении и многих других металлов (меди, никеля, свинца и др.). Кислород используют при резке и сварке металлов. При этом применяют сжатый газообразный кислород, хранимый под давлением 15 МПа в специальных стальных баллонах. Баллоны с кислородом окрашены в голубой цвет для отличия от баллонов с другими газами.

Жидкий кислород - мощный окислитель, его используют как компонент ракетного топлива. Смесь жидкого кислорода и жидкого озона один из самых мощных окислителей ракетного топлива. Пропитанные жидким кислородом такие легко окисляющиеся материалы, как древесные опилки, вата, угольный порошок и др. (эти смеси называют оксиликвитами), используют как взрывчатые вещества, применяемые, например, при прокладке дорог в горах.

круговорот кислород химический элемент

2.2 Круговорот кислорода

Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 88,8% кислорода, в атмосферном воздухе 23,15% по весу или 20,95% по объему, а в земной коре 47,4% по весу.

Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца.

Рис.1. Условная схема фотосинтеза.

Кислород - основной биогенный элемент, входящий в состав молекул всех важнейших веществ, обеспечивающих структуру и функции клеток - белков, нуклеиновых кислот, углеводов, липидов, а также множества низкомолекулярных соединений. В каждом растении или животном кислорода гораздо больше, чем любого другого элемента (в среднем около 70%). Мышечная ткань человека содержит 16% кислорода, костная ткань - 28,5%; всего в организме среднего человека (масса тела 70 кг) содержится 43 кг кислорода. В организм животных и человека кислород поступает в основном через органы дыхания (свободный кислород) и с водой (связанный кислород). Потребность организма в кислороде определяется уровнем (интенсивностью) обмена веществ, который зависит от массы и поверхности тела, возраста, пола, характера питания, внешних условий и др. В экологии как важную энергетическую характеристику определяют отношение суммарного дыхания (то есть суммарных окислительных процессов) сообщества организмов к его суммарной биомассе.

В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе.

Незначительное количество атмосферного кислорода участвует в цикле образования и разрушения озона при сильном ультрафиолетовом излучении:

O2 → O2*

O2* + O2 → O3 + O

O + O2 → O3

O3 → 3O2

Большая часть кислорода, вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа и др.

Геохимический круговорот кислорода связывает газовую и жидкую оболочки с земной корой. Его основные моменты: выделение свободного кислорода при фотосинтезе, окисление химических элементов, поступление предельно окисленных соединений в глубокие зоны земной коры и их частичное восстановление, в том числе за счет соединений углерода, вынос оксида углерода и воды на поверхность земной коры и вовлечение их в реакцию фотосинтеза. Схема круговорота кислорода в несвязанном виде представлена ниже.

Рис.2. Схема круговорота кислорода в природе.

Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды (рис. 3). В процессе круговорота вода испаряется с поверхности океана, водяные пары перемещаются вместе с воздушными течениями, конденсируются, и вода возвращается в виде атмосферных осадков на поверхность суши и моря. Различают большой круговорот воды, при котором вода, выпавшая в виде осадков на сушу, возвращается в моря путем поверхностного и подземного стоков; и малый круговорот воды, при котором осадки выпадают на поверхность океана.

Из приведенных примеров круговоротов и миграции элемента видно, что глобальная система циклической миграции химических элементов обладает высокой способностью к саморегуляции, при этом огромную роль в круговороте химических элементов играет биосфера.

В то же время хозяйственная деятельность человека вызывает деформацию природных циклов массообмена и, следовательно, изменение состава окружающей среды. Эти изменения происходят значительно быстрее, чем совершаются процессы генетической адаптации организмов и видообразования. Зачастую хозяйственные действия настолько непродуманны или несовершенны, что создают острую экологическую опасность. Изучение процессов массообмена, связывающих в единое целое все оболочки Земли, должно помочь в создании системы контроля за эколого-геохимическим состоянием окружающей среды и разработке научно обоснованного прогноза экологических последствий хозяйственных действий и новых технологий.


Список литературы

1.Добровольский В.В. Основы биогеохимии. Учеб. пособие для геогр., биол., геол., с.-х. спец. вузов. М.: Высш. шк., 1998

2.Каменский А.А., Соколова Н.А., Валовая М.А. Основы биологии. Полный курс общеобразовательной средней школы/ А.А. Каменский, Н.А. Соколова, М.А. Валовая. - М.: Издательство «Экзамен», 2004 - 448 с.

Интернет-ресурс http://ru.wikipedia.org/

Химия, 8 класс Дата__________

Урок №___

Тема урока: Свойства и применение кислорода. Круговорот кислорода в природе

Цель урока: изучить физические и химические свойства кислорода, дать общее понятие об оксидах, реакциях горения; рассмотреть

практическую значимость и применение; доказать, что кислород - один из важнейших элементов на Земле.

З адачи урока:

    Образовательные :

    Расширить представления обучающихся о кислороде.

    Познакомить со свойствами и применением кислорода.

    Совершенствовать умения составлять уравнения химических реакций.

    Воспитательные :

    Формировать умения работать в парах у каждого обучающегося, считаться с мнением соседа и отстаивать свою точку зрения корректно, выполняя упражнения.

    Воспитывать бережное отношение к своему здоровью, окружающей природе, учить понимать прекрасное, ценить произведения искусства.

    Развивающие :

    Способствовать продолжению развития устойчивого интереса к химической науке и практике.

    Совершенствовать навыки самостоятельной работы, развивать умения наблюдать, формулировать высказывания.

    Способствовать развитию исследовательских навыков, соблюдая правила техники безопасности.

    Совершенствовать умения обобщать и делать выводы.

Планируемые результаты:

    личностные: готовность и способность учащихся к саморазвитию, самоопределению; ответственное отношение к учению; способность ставить цели и строить жизненные планы; формирование коммуникативной культуры, ценности здорового и безопасного образа жизни;

    метапредметные: уметь ставить цель и планировать пути её достижения, выбирая более рациональные способы решения данной проблемы; учиться корректировать свои действия в связи с изменением создавшейся ситуации; уметь создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач; уметь осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих мыслей и потребностей; уметь организовывать совместную работу со сверстниками в парах; уметь находить информацию в различных источниках; владеть навыками самоконтроля, самооценки;

    предметные:

    знать : основные химические понятия «катализаторы», «оксиды», «реакции горения», «реакции окисления»; физические и химические свойства кислорода; области применения кислорода.

    уметь: отличить кислород от других газов; составлять уравнения реакций горения веществ в кислороде; записывать химические формулы оксидов и давать им названия; объяснять, как происходит круговорот кислорода в природе .

Тип урока: урок формирования умений и навыков.

Форма работы: фронтальная, групповая, работа в парах, игровая.

Методы обучения: словесный, частично-поисковый, наглядный, демонстрационный, интерактивный.

Приемы обучения : постановка проблемных вопросов.

Оборудование: компьютер, проектор, презентация «Свойства и применение кислорода. Круговорот кислорода в природе», пробирка с

газоотводной трубкой, колба, стеклянная пластина, пинцет, ложка для сжигания веществ, штатив, спиртовка, универсальная

индикаторная бумага, химический стакан.

Реактив ы: красный фосфор, вода.

Литература:

Для учителя:

    Горковенко М. Ю. Поурочные разработки по химии 8 класс к учебникам О. С. Габриеляна, Л. С. Гузея, Г. Е. Рудзитиса. - М: «ВАКО», 2004;

    Радецкий А. М., Горшкова В. П. Дидактический материал: химия 8-9 классы - М: Просвещение, 1997.

Для ученика:

    Химия: неорганическая химия: учебник для 8 класса общеобразовательных учреждений/ Г. Е. Рудзитис, Ф. Г. Фельдман. - М: «Просвещение», 2014 г.

Интернет-ресурсы:

    http://www.e-osnova.ru/

ХОД УРОКА

І. Организационный момент. (1 мин.) (Слайд №1)

Учитель: Добрый день! Прошу всех садиться. Я поздравляю вас еще с одним чудесным днем. И мы с вами продолжаем творить волшебство на уроках химии.

ІІ. Актуализация знаний. (7 мин.).

Фронтальный опрос «А ну-ка, химики» . (Слайд №2)

Учитель: Сегодня на уроке мы изучим свойства и применение кислорода. Круговорот кислорода в природе. Но перед тем как

приступить к изучению новой темы, вам следует ответить на следующие вопросы: 2 обучающихся получают задание на карточках и

Выполняют его у доски:

На какой диаграмме распределение массовых долей элементов отвечает

количественному составу (NH 4 ) 3 PO 4 ? Ответ: 4.

Фронтальный опрос

    Химический знак кислорода? Ответ: О

    Относительная атомная масса кислорода? Ответ: 16.

    Химическая формула кислорода? Ответ: О2.

    Относительная молекулярная масса кислорода? Ответ: 32.

    В соединениях кислород обычно какой валентности? Ответ: II.

    Расскажите о нахождении кислорода в природе. Ответ: Кислород - самый распространенный химический элемент в земной коре. Кислород - самый распространенный на Земле элемент, на его долю приходится около 49% массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 85,5% (по массе), в атмосфере содержание свободного кислорода составляет 21% по объёму и 23% по массе. Более 1500 соединений земной коры в своем составе содержат кислород. Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет 20,9%, по массовой доле - около 65 %.

    Перечислите способы получения кислорода в лаборатории? Ответ:

В лаборатории кислород получают следующими

способами:

1) Разложение перманганата калия. 2KMnO4 = K2MnO4+MnO2+O2

2) Разложение перекиси водорода. 2H2O2 = 2H2O + O2

3) Разложение бертолетовой соли. 2KClO3 = 2KCl + 3O2

8. Перечислите способы получения кислорода в промышленности. Ответ: В промышленности кислород получают:

1) Электролиз воды. 2H2O = 2H2 + O2

2) Из воздуха. ВОЗДУХ давление, -183˚C=O2 (голубая жидкость).

В настоящее время в промышленности кислород получают из воздуха. В лабораториях небольшие количества кислорода можно получать нагреванием перманганата калия (марганцовка) KMnO4. Кислород мало растворим в воде и тяжелее воздуха, поэтому его можно получать двумя способами:

9. Установите соответствие между способом получения кислорода и уравнением химической реакцией. Работа в парах. (Слайд №3)

Способы получения кислорода

Уравнения химических реакций

А. Разложение перманганата калия.

Б. Разложение перекиси водорода.

В. Разложение бертолетовой соли.

Г. Электролиз воды.

Д. Из воздуха.

1) 2KClO 3 = 2KCl + 3O 2

2) 2H 2 O 2 = 2H 2 O + O 2

3) ВОЗДУХ = O 2

4) 2KMn O 4 = K 2 Mn O 4 + Mn O 2 + O 2

5) 2H 2 O = 2H 2 + O 2

Ответ: А-4; Б-2; В-1; Г-5; Д-3.

10. Что называют катализаторами? Где эти вещества применяются? Ответ: Вещества, которые ускоряют химические реакции,

но сами при этом не расходуются, называют катализаторами. Катализаторы широко применяют в химической промышленности. С

их помощью удается повысить производительность химических процессов, снизить себестоимость выпускаемой продукции и более

полно использовать сырье.

ІІІ. Изучение нового материала. (12 мин.) (Слайд №4)

Учитель: Физические свойства. Кислород - бесцветный газ, без вкуса и запаха, относительно малорастворим в воде (в 100 объемах

Воды при температуре 20 ºС растворяется 3,1 объема кислорода). Кислород немного тяжелее воздуха: 1л кислорода при нормальных

условиях весит 1,43 г, а 1л воздуха - 1,29г. (Нормальные условия - сокращенно: н.у. - температура 0ºС и давление 760 мм.рт.ст., или

1 атм. ≈ 0,1 МПа). При давлении 760 мм.рт.ст. и температуре -183ºС кислород сжижается, а при снижении температуры до -218,8ºС

затвердевает.

(Слайд №5) Химические свойства. Кислород при нагревании энергично реагирует со многими веществами, при этом выделяются

Теплота и свет. Такие реакции называют реакциями горения. Если опустить в сосуд с кислородом O 2 тлеющий уголек, то он

Раскаляется добела и сгорает, образуя оксид углерода( IV ) С O 2 . Чтобы определить, какое образовалось вещество, в сосуд наливают

Известковую воду - раствор гидроксида кальция Са(ОН) 2 . Она мутнеет, так как при этом образуется нерастворимый карбонат

Кальция СаС O 3 :

CO 2 + Ca(OH) 2 = CaCO 3 ↓ + H 2 O

(Слайд №6) Сера горит в O 2 ярким синим пламенем с образованием газа с резким запахом - оксида серы( IV )

S + O 2 = SO 2

(Слайд №7) Демонстрационный опыт «Горение фосфора в кислороде»

Техника безопасности (провести инструктаж!) Опыт следует проводить под тягой. Следует соблюдать правила обращения с

Нагревательными приборами. Не допускать попадания горящего фосфора на рабочую поверхность стола. Не вдыхать выделяющийся

Дым фосфорного ангидрида.

Фосфор Р сгорает в O 2 ярким пламенем с образованием белого дыма, состоящего из твердых частиц оксида фосфора( V).

4P + 5O 2 = 2P 2 O 5

(Слайд №8) В кислороде горят и такие вещества, которые обычно считают негорючими, например железо. Если к тонкой стальной

Проволоке прикрепить спичку, зажечь ее и опустить в сосуд с кислородом, то от спички загорится и железо. Горение железа

Происходит с треском и разбрасыванием ярких раскаленных искр - расплавленных капель железной окалины Fe3O4. В этом

Соединении два атома железа трехвалентны и один двухвалентен. Поэтому реакцию горения железа в кислороде можно выразить

Следующим уравнением:

3 Fe + 2 O 2 = FeO * Fe 2 O 3 или Fe 3 O 4

(Слайд №9) Взаимодействие вещества с кислородом относится к реакциям окисления .

(Слайд №10) Горение - это химическая реакция, при которой происходит окисление веществ с выделением теплоты и света.

В большинстве случаев при взаимодействии веществ с кислородом образуются оксиды. (Слайд №11) Оксиды - это сложные

Вещества, которые состоят из двух элементов, одним из которых является кислород.

(Слайд №12) Известны химические элементы, которые непосредственно с кислородом не соединяются. К ним относятся золото Au и

Некоторые другие. Оксиды этих элементов получают косвенным путем.

(Слайд №13) Применение кислорода. Основано на его химических свойствах. В больших количествах кислород используют для

Ускорения химических реакций в разных отраслях химической промышленности и в металлургии. Например, при выплавке чугуна

Для повышения производительности доменных печей в них подают воздух, обогащенный кислородом.

(Слайд №14) При сжигании смеси ацетилена или водорода с кислородом в специальных горелках температура пламени достигает

3000 º С. Такое пламя используется для сварки металлов. Если берут кислород в избытке, то пламенем можно резать металл.

(Слайд №15) Жидкий кислород применяют в ракетных двигателях.

(Слайд №16) В медицине кислород служит для облегчения затрудненного дыхания. В этом случае кислородом заполняют

Специальные подушки. Кислородные маски необходимы в высотных полетах, в космосе и при работе под водой.

(Слайд №17) Кислород расходуется в громадных количествах на многие химические реакции, например на сжигание топлива.

(Слайд №18) Из сказанного видно, что очень много кислорода расходуется на разнообразную деятельность человека, тратится на

Процессы дыхания человека, животных, растений, а также на процессы гниения. Человек при дыхании в течение 1 мин в среднем

Употребляет 0,5 дм ³ кислорода, в течении суток - 720 дм ³ , а в год - 262,8 м ³ кислорода, что все жители земного шара (5 миллиардов)

В течение года для дыхания используют 1578 миллиардов кубических метров кислорода. Если такой объем кислорода при нормальном

Давлении поместить в железнодорожные цистерны, то поезд был бы протяженностью более 300 млн км, что равняется расстоянию до

Солнца и обратно.

(Слайд №19) Но все же общая масса кислорода в воздухе заметно не изменяется. Это объясняется процессом фотосинтеза,

Происходящим в зеленых растениях на свету. В результате этого процесса выделяется кислород.

С фотосинтезом вы уже знакомились в курсе ботаники. Упрощенно процесс фотосинтеза изображают так:

6CO 2 + 6H 2 O = C 6 H 12 O 6 + 6O 2 .

Так в природе происходит непрерывный круговорот кислорода.

(Слайд №20) В целях сохранения кислорода в воздухе вокруг городов и крупных промышленных центров создаются зоны зеленых

Насаждений. Специальная служба систематически контролирует содержание кислорода в воздухе. При необходимости применяют

Меры по устранению загрязнения воздуха.

(Слайд №21) Физкультминутка. (1 мин.)

Руки кверху поднимаем,
А потом их отпускаем.
А потом их развернем
И к себе скорей прижмем.
А потом быстрей, быстрей
Хлопай, хлопай веселей.

IV. Закрепление знаний. (6 мин.)

(Слайд №22) Задание №1. «Правда или ложь? Если знаешь - разберешь»

Для кислорода верны следующие утверждения:

а) Кислород – бесцветный газ, без вкуса и запаха .

б) Кислород немного легче воздуха.

в) В кислороде горят и такие вещества, которые обычно считают негорючими, например железо.

г) Известны химические элементы, которые непосредственно с кислородом соединяются. К ним относятся золото Au и некоторые другие.

д) Применение кислорода основано на его физических свойствах.

е) Непрерывный круговорот кислорода непосредственно связан с таким процессом, как фотосинтез.

Ответ: а; в; е.

(Слайд №23) Задание №2. «Скорая помощь»

Вставьте пропущенные вещества в уравнениях реакций:

а) …….. + Ca(OH) 2 = CaCO 3 ↓ + H 2 O

б) S + ……. = SO 2

в) ….. + 2 O 2 = FeO * Fe 2 O 3 или Fe 3 O 4

Ответ: а)CO 2 б)O 2 в) 3 Fe

(Слайд №24) Задание №3. «Мозговой штурм»

Расставьте коэффициенты в уравнениях реакций.

а) CO 2 + H 2 O = C 6 H 12 O 6 + O 2

б) P + O 2 = P 2 O 5

(Слайд №25) Задание №4. «Ассоциации»

С каким применением кислорода ассоциируется данное изображение?

(Слайд №26) 1) в металлургии;

(Слайд №27) 2) в авиации для двигателей;

(Слайд №28) 3) в авиации для дыхания;

(Слайд №29) 4) для резки металлов;

(Слайд №30) 5) для сварки металлов;

(Слайд №31) 6) на взрывных работах;

(Слайд №32) 7) в медицине.

(Слайд №33) V. Домашнее задание. (1 мин.)

§20,21; №6-9 (с.60). Решите задачи 1-2 (с.60).

Творческое задание: подготовить сообщение №10 с. 60 «Что делается в вашей местности для поддержания определенного содержания

Кислорода в воздухе? В чем может заключаться ваше участие в этой деятельности?»

(Слайд №33) VI. Рефлексия. (1 мин.)

Учитель:

    С егодня я узнал...

    было трудно…

    я понял, что…

    я научился…

    я смог…

    было интересно узнать, что…

    меня удивило…

    мне захотелось…

VII. Подведение итогов урока. (1 мин.)

(Слайд №34) В чём горят дрова и газ,
Фосфор, водород, алмаз?
Дышит чем любой из нас
Каждый миг и каждый час?
Без чего мертва природа?
Правильно, без….
Обучающиеся: кислорода

Учитель: Правильно. Спасибо за урок! До свидания! (Слайд №35)

Круговорот кислорода

Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 88,8% кислорода, в атмосферном воздухе 23,15% по весу или 20,95% по объему, а в земной коре 47,4% по весу.

Указанная концентрация кислорода в атмосфере поддерживается постоянной благодаря процессу фотосинтеза (рис. 1). В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород:

6CO 2 + 6H 2 O + энергия света = C 6 H 12 O 6 + 6O 2

Выше приведено суммарное уравнение фотосинтеза; на самом же деле, кислород выделяется в атмосферу на первой его стадии - в процессе фотолиза воды.

Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца.

Рис.1.

Кислород - основной биогенный элемент, входящий в состав молекул всех важнейших веществ, обеспечивающих структуру и функции клеток - белков, нуклеиновых кислот, углеводов, липидов, а также множества низкомолекулярных соединений. В каждом растении или животном кислорода гораздо больше, чем любого другого элемента (в среднем около 70%). Мышечная ткань человека содержит 16% кислорода, костная ткань - 28,5%; всего в организме среднего человека (масса тела 70 кг) содержится 43 кг кислорода. В организм животных и человека кислород поступает в основном через органы дыхания (свободный кислород) и с водой (связанный кислород). Потребность организма в кислороде определяется уровнем (интенсивностью) обмена веществ, который зависит от массы и поверхности тела, возраста, пола, характера питания, внешних условий и др. В экологии как важную энергетическую характеристику определяют отношение суммарного дыхания (то есть суммарных окислительных процессов) сообщества организмов к его суммарной биомассе.

В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе.

Незначительное количество атмосферного кислорода участвует в цикле образования и разрушения озона при сильном ультрафиолетовом излучении:

O 2 * + O 2 > O 3 + O

Большая часть кислорода, вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа и др.

Геохимический круговорот кислорода связывает газовую и жидкую оболочки с земной корой. Его основные моменты: выделение свободного кислорода при фотосинтезе, окисление химических элементов, поступление предельно окисленных соединений в глубокие зоны земной коры и их частичное восстановление, в том числе за счет соединений углерода, вынос оксида углерода и воды на поверхность земной коры и вовлечение их в реакцию фотосинтеза. Схема круговорота кислорода в несвязанном виде представлена ниже.

Рис.2.

Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды (рис. 3). В процессе круговорота вода испаряется с поверхности океана, водяные пары перемещаются вместе с воздушными течениями, конденсируются, и вода возвращается в виде атмосферных осадков на поверхность суши и моря. Различают большой круговорот воды, при котором вода, выпавшая в виде осадков на сушу, возвращается в моря путем поверхностного и подземного стоков; и малый круговорот воды, при котором осадки выпадают на поверхность океана.

Из приведенных примеров круговоротов и миграции элемента видно, что глобальная система циклической миграции химических элементов обладает высокой способностью к саморегуляции, при этом огромную роль в круговороте химических элементов играет биосфера.

В то же время хозяйственная деятельность человека вызывает деформацию природных циклов массообмена и, следовательно, изменение состава окружающей среды. Эти изменения происходят значительно быстрее, чем совершаются процессы генетической адаптации организмов и видообразования. Зачастую хозяйственные действия настолько непродуманны или несовершенны, что создают острую экологическую опасность. Изучение процессов массообмена, связывающих в единое целое все оболочки Земли, должно помочь в создании системы контроля за эколого-геохимическим состоянием окружающей среды и разработке научно обоснованного прогноза экологических последствий хозяйственных действий и новых технологий.


Кислород - самый распространенный элемент земной коры. В свободном состоянии он находится в атмосферном воздухе, в связанном виде входит в состав воды, минералов, горных пород и всех веществ, из которых построены организмы растений и животных. Массовая доля кислорода в земной коре составляет около 47%.

Кислород - бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха. Кислород играет исключительно важную роль в природе. При участии кислорода совершается один из важнейших жизненных процессов - дыхание . Важное значение имеет и другой процесс, в котором участвует кислород - тление и гниение погибших животных и растений; при этом сложные органические вещества превращаются в более простые (в конечном результате в CO 2 , воду и азот) , а последние вновь вступают в общий круговорот веществ в природе.

Кислород - наиболее активный газ. В пределах биосферы происходит быстрый обмен кислорода среды с живыми организмами или их остатками после гибели.

В составе земной атмосферы кислород занимает второе место после азота. Господствующей формой нахождения кислорода в атмосфере является молекула О 2 . Круговорот кислорода в биосфере весьма сложен, поскольку он вступает во множество химических соединений минерального и органического миров.

Главным образом круговорот кислорода происходит между атмосферой и живыми организмами. В основном свободный кислород (О 2) поступает в атмосферу в результате фотосинтеза зеленых растений, а потребляется в процессе дыхания животными, растениями и микроорганизмами, и при минерализации органических остатков (гниения различных веществ). Незначительное количество кислорода образуется из воды и озона под воздействием ультрафиолетовой радиации.

В истории биосферы Земли наступило такое время, когда количество свободного кислорода достигло определенного уровня и оказалось сбалансированным таким образом, что количество выделяемого кислорода стало равным количеству поглощаемого кислорода.

Большое количество кислорода расходуется на окислительные процессы в земной коре, при извержении вулканов и т.д.

Основная доля кислорода продуцируется растениями суши - почти 3/4, остальная часть - фотосинтезирующими организмами Мирового океана. Скорость круговорота - около 2 тыс. лет.

Установившиеся в биосфере объемы потоков кислорода и кислородосодержащих соединений в современных условиях нарушаются техногенными миграциями. Промышленные, бытовые и сельскохозяйственные отходы, сброшенные в природные воды (реки, озера, моря, океаны), связывают растворенный в воде кислород, что также нарушает объемы кислородных потоков в биосфере. Загрязнение почв, сведение лесов уменьшает обмен кислородом и диоксидом углерода между атмосферой и сушей. Однако запасы кислорода на планете неисчерпаемы. Он входит в состав кристаллических решеток минералов и высвобождается из них при помощи живого вещества. Поэтому для поддержания установившихся объемов кислородных потоков в биосфере необходимо сохранение живого вещества как главной геохимической силы.


Установлено, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который образуется в процессе фотосинтеза, и эта цифра постоянно возрастает.

Кислород атмосферы накоплен в результате деятельности зеленых растений. Потребовалось около 2,5–3 млрд.лет для создания современного состава атмосферы, содержащей 21% кислорода.

Весь свободный кислород в атмосфере оценивается в 1,6×10 9 т. Это его количество потребляется на дыхание живыми организмами за 2 тыс.лет, что и составляет время полного круговорота кислорода в биосфере.

Круговорот кислорода в биосфере (Клауд, Джибор, 1972)

У верхней границы тропосферы под влиянием космических излучений из кислорода образуется озон. Следовательно, озоновый экран, предохраняющий жизнь от смертоносных излучений, также результат деятельности живого вещества, то есть жизнь сама защищает себя от смерти. Этот факт подтверждает гипотезу Ген, по которой глобальные процессы, определяющие пределы жизни, регулируются только биологическими процессами самой биосферы.

На Земле находится 49,4% кислорода, который встречается либо в свободном виде в воздухе, либо в связанном (вода, соединения и минералы).

Характеристика кислорода

На нашей планете газ кислород распространен больше всех других химических элементов. И это неудивительно, ведь он входит в состав:

  • горных пород,
  • воды,
  • атмосферы,
  • живых организмов,
  • белков, углеводов и жиров.

Кислород активный газ и поддерживает горение.

Физические свойства

В атмосфере кислород содержится в бесцветном газообразном виде. Он не имеет запаха, малорастворим в воде и других растворителях. У кислорода прочные молекулярные связи, из-за которых он химически малоактивен.

Если кислород нагревать, он начинает окислять и реагировать с большинством неметаллов и металлов. Например, железо, этот газ медленно окисляет и вызывает его ржавление.

При снижении температуры (-182,9°С), и нормальном давлении газообразный кислород переходит в другое состояние (жидкое) и приобретает бледно-синий цвет. Если температуру еще снижать (до -218,7°С) газ затвердеет и изменится до состояния синих кристаллов.

В жидком и твердом состояниях кислород приобретает синий цвет и обладает магнитными свойствами.

Древесный уголь является активным поглотителем кислорода.

Химические свойства

Почти во время всех реакций кислорода с другими веществами образуется и выделяется энергия, сила которой может зависеть от температуры. Например, при обычных температурах этот газ медленно реагирует с водородом, а при температуре выше 550°С возникает реакция со взрывом.

Кислород - активный газ, который входит в реакцию с большинством металлов, кроме платиновых и золота. Сила и динамика взаимодействия, во время которого образуются оксиды, зависит от присутствия в металле примесей, состояния его поверхности и измельчения. Некоторые металлы, во время связи с кислородом, кроме основных оксидов образуют амфотерные и кислотные оксиды. Оксиды золота и платиновых металлов возникают во время их разложения.

Кислород кроме металлов, так же активно взаимодействует практически со всеми химическими элементами (кроме галогенов).

В молекулярном состоянии кислород более активен и эту особенность используют при отбеливании различных материалов.

Роль и значение кислорода в природе

Зеленые растения вырабатывают больше всего кислорода на Земле, причем основная масса производится водными растениями. Если кислорода в воде выработалась больше, то избыток уйдет в воздух. А если меньше, то наоборот, недостающее количество будет дополнено из воздуха.

Морская и пресная вода содержит 88,8 % кислорода (по массе), а в атмосфере его 20,95 % по объёму. В земной коре больше 1500 соединений имеют в составе кислород.

Из всех газов, входящих в состав атмосферы, больше всего важен для природы и человека кислород. Он есть в каждой живой клетке и необходим всем живым организмам для дыхания. Недостаток кислорода в воздухе сразу отражается на жизнедеятельности. Без кислорода невозможно дышать, а значит жить. Человек во время дыхания за 1 мин. в среднем его потребляет 0,5 дм3. Если в воздухе его станет меньше до 1/3 его части, то он потеряет сознание, до 1/4 части — он умрет.

Дрожжи и некоторые бактерии могут жить без кислорода, но теплокровные животные, умирают при его недостатке через несколько минут.

Круговорот кислорода в природе

Круговоротом кислорода в природе называется обмен им между атмосферой и океанами, между животными и растениями во время дыхания, а так же в процессе химического горения.

На нашей планете важный источник кислорода - растения, в которых проходит уникальный процесс фотосинтеза. Во время него происходит выделение кислорода.

В верхней части атмосферы тоже образуется кислород, вследствие разделения воды под действием Солнца.

Как происходит круговорот кислорода в природе?

Во время дыхания животных, людей и растений, а так же горения любого топлива тратится кислород и образуется углекислый газ. Потом углекислым газом питаются растения, которые в процессе фотосинтеза снова вырабатывают кислород.

Таким образом, его содержание в воздухе атмосферы поддерживается и не заканчивается.

Области применения кислорода

В медицине во время операций и опасных для жизни заболеваний больным дают дышать чистым кислородом, чтобы облегчить их состояние и ускорить выздоровление.

Без баллонов с кислородом альпинисты не поднимаются в горы, а аквалангисты не погружаются на глубину морей и океанов.

Кислород широко применяется в разных видах промышленности и производства:

  • для обрезки и сварки различных металлов
  • для получения очень высоких температур на заводах
  • для получения разнообразных химических соединений. для ускорения плавления металлов.

Так же широко кислород применяется в космической индустрии и авиации.